請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62118完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏文(Hungwen Chen) | |
| dc.contributor.author | Cheng-Fu Lin | en |
| dc.contributor.author | 林承賦 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:28:44Z | - |
| dc.date.available | 2018-08-23 | |
| dc.date.copyright | 2013-08-23 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-22 | |
| dc.identifier.citation | 第六章 參考文獻
Akiyama, Y., Hosoya, T., Poole, A.M., and Hotta, Y. (1996). The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proceedings of the National Academy of Sciences of the United States of America 93, 14912-14916. Anson-Cartwright, L., Dawson, K., Holmyard, D., Fisher, S.J., Lazzarini, R.A., and Cross, J.C. (2000). The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nature genetics 25, 311-314. Athanassiades, A., and Lala, P.K. (1998). Role of placenta growth factor (PIGF) in human extravillous trophoblast proliferation, migration and invasiveness. Placenta 19, 465-473. Baczyk, D., Drewlo, S., Proctor, L., Dunk, C., Lye, S., and Kingdom, J. (2009). Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell death and differentiation 16, 719-727. Bischof, P., and Irminger-Finger, I. (2005). The human cytotrophoblastic cell, a mononuclear chameleon. The international journal of biochemistry & cell biology 37, 1-16. Buechling, T., Chaudhary, V., Spirohn, K., Weiss, M., and Boutros, M. (2011). p24 proteins are required for secretion of Wnt ligands. EMBO reports 12, 1265-1272. Cartwright, J.E., Tse, W.K., and Whitley, G.S. (2002). Hepatocyte growth factor induced human trophoblast motility involves phosphatidylinositol-3-kinase, mitogen-activated protein kinase, and inducible nitric oxide synthase. Experimental cell research 279, 219-226. Cawthorn, W.P., Bree, A.J., Yao, Y., Du, B., Hemati, N., Martinez-Santibanez, G., and MacDougald, O.A. (2012). Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50, 477-489. Chang, C.W., Chang, G.D., and Chen, H. (2011). A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion. Molecular and cellular biology 31, 3820-3831. Chang, M., Mukherjea, D., Gobble, R.M., Groesch, K.A., Torry, R.J., and Torry, D.S. (2008). Glial cell missing 1 regulates placental growth factor (PGF) gene transcription in human trophoblast. Biology of reproduction 78, 841-851. Chen, C.P., Chen, C.Y., Yang, Y.C., Su, T.H., and Chen, H. (2004). Decreased placental GCM1 (glial cells missing) gene expression in pre-eclampsia. Placenta 25, 413-421. Chen, C.P., Chen, L.F., Yang, S.R., Chen, C.Y., Ko, C.C., Chang, G.D., and Chen, H. (2008). Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biology of reproduction 79, 815-823. Chen, M., Wang, J., Lu, J., Bond, M.C., Ren, X.R., Lyerly, H.K., Barak, L.S., and Chen, W. (2009). The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry 48, 10267-10274. Chiang, M.H., Chen, L.F., and Chen, H. (2008). Ubiquitin-conjugating enzyme UBE2D2 is responsible for FBXW2 (F-box and WD repeat domain containing 2)-mediated human GCM1 (glial cell missing homolog 1) ubiquitination and degradation. Biology of reproduction 79, 914-920. Chiang, M.H., Liang, F.Y., Chen, C.P., Chang, C.W., Cheong, M.L., Wang, L.J., Liang, C.Y., Lin, F.Y., Chou, C.C., and Chen, H. (2009). Mechanism of hypoxia-induced GCM1 degradation: implications for the pathogenesis of preeclampsia. The Journal of biological chemistry 284, 17411-17419. Chou, C.C., Chang, C., Liu, J.H., Chen, L.F., Hsiao, C.D., and Chen, H. (2007). Small ubiquitin-like modifier modification regulates the DNA binding activity of glial cell missing Drosophila homolog a. The Journal of biological chemistry 282, 27239-27249. Chuang, H.C., Chang, C.W., Chang, G.D., Yao, T.P., and Chen, H. (2006). Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic acids research 34, 1459-1469. Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205. Cohen, S.X., Moulin, M., Hashemolhosseini, S., Kilian, K., Wegner, M., and Muller, C.W. (2003). Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. The EMBO journal 22, 1835-1845. Cross, J.C., Baczyk, D., Dobric, N., Hemberger, M., Hughes, M., Simmons, D.G., Yamamoto, H., and Kingdom, J.C. (2003). Genes, development and evolution of the placenta. Placenta 24, 123-130. De Falco, S. (2012). The discovery of placenta growth factor and its biological activity. Experimental & molecular medicine 44, 1-9. Desai, J., Holt-Shore, V., Torry, R.J., Caudle, M.R., and Torry, D.S. (1999). Signal transduction and biological function of placenta growth factor in primary human trophoblast. Biology of reproduction 60, 887-892. Esnault, C., Priet, S., Ribet, D., Vernochet, C., Bruls, T., Lavialle, C., Weissenbach, J., and Heidmann, T. (2008). A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proceedings of the National Academy of Sciences of the United States of America 105, 17532-17537. Golestaneh, N., Beauchamp, E., Fallen, S., Kokkinaki, M., Uren, A., and Dym, M. (2009). Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction 138, 151-162. Gude, N.M., Roberts, C.T., Kalionis, B., and King, R.G. (2004). Growth and function of the normal human placenta. Thrombosis research 114, 397-407. Handwerger, S. (2010). New insights into the regulation of human cytotrophoblast cell differentiation. Molecular and cellular endocrinology 323, 94-104. Hashemolhosseini, S., and Wegner, M. (2004). Impacts of a new transcription factor family: mammalian GCM proteins in health and disease. The Journal of cell biology 166, 765-768. Hausmann, G., Banziger, C., and Basler, K. (2007). Helping Wingless take flight: how WNT proteins are secreted. Nature reviews Molecular cell biology 8, 331-336. Herr, P., and Basler, K. (2012). Porcupine-mediated lipidation is required for Wnt recognition by Wls. Developmental biology 361, 392-402. Hosoya, T., Takizawa, K., Nitta, K., and Hotta, Y. (1995). glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025-1036. Huppertz, B., and Borges, M. (2008). Placenta trophoblast fusion. Methods in molecular biology 475, 135-147. Ishida-Takagishi, M., Enomoto, A., Asai, N., Ushida, K., Watanabe, T., Hashimoto, T., Kato, T., Weng, L., Matsumoto, S., Asai, M., et al. (2012). The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nature communications 3, 859. Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C., and Garcia, K.C. (2012). Structural basis of Wnt recognition by Frizzled. Science 337, 59-64. Jessen, J.R. (2009). Noncanonical Wnt signaling in tumor progression and metastasis. Zebrafish 6, 21-28. Jones, B.W., Fetter, R.D., Tear, G., and Goodman, C.S. (1995). glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82, 1013-1023. Kang, S., Bajnok, L., Longo, K.A., Petersen, R.K., Hansen, J.B., Kristiansen, K., and MacDougald, O.A. (2005). Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha. Molecular and cellular biology 25, 1272-1282. Kim, J., Jones, B.W., Zock, C., Chen, Z., Wang, H., Goodman, C.S., and Anderson, D.J. (1998). Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proceedings of the National Academy of Sciences of the United States of America 95, 12364-12369. Knerr, I., Schubert, S.W., Wich, C., Amann, K., Aigner, T., Vogler, T., Jung, R., Dotsch, J., Rascher, W., and Hashemolhosseini, S. (2005). Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS letters 579, 3991-3998. Liang, C.Y., Wang, L.J., Chen, C.P., Chen, L.F., Chen, Y.H., and Chen, H. (2010). GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biology of reproduction 83, 387-395. Lin, F.Y., Chang, C.W., Cheong, M.L., Chen, H.C., Lee, D.Y., Chang, G.D., and Chen, H. (2011). Dual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation. Nucleic acids research 39, 848-861. Longo, K.A., Wright, W.S., Kang, S., Gerin, I., Chiang, S.H., Lucas, P.C., Opp, M.R., and MacDougald, O.A. (2004). Wnt10b inhibits development of white and brown adipose tissues. The Journal of biological chemistry 279, 35503-35509. Lu, J., Zhang, S., Nakano, H., Simmons, D.G., Wang, S., Kong, S., Wang, Q., Shen, L., Tu, Z., Wang, W., et al. (2013). A positive feedback loop involving Gcm1 and Fzd5 directs chorionic branching morphogenesis in the placenta. PLoS biology 11, e1001536. Luga, V., Zhang, L., Viloria-Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Buchanan, M., Hosein, A.N., Basik, M., and Wrana, J.L. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542-1556. Malassine, A., Blaise, S., Handschuh, K., Lalucque, H., Dupressoir, A., Evain-Brion, D., and Heidmann, T. (2007). Expression of the fusogenic HERV-FRD Env glycoprotein (syncytin 2) in human placenta is restricted to villous cytotrophoblastic cells. Placenta 28, 185-191. Malassine, A., Pidoux, G., Gerbaud, P., Frendo, J.L., and Evain-Brion, D. (2011). Human trophoblast in trisomy 21: a model for cell-cell fusion dynamic investigation. Advances in experimental medicine and biology 714, 103-112. Maltepe, E., Bakardjiev, A.I., and Fisher, S.J. (2010). The placenta: transcriptional, epigenetic, and physiological integration during development. The Journal of clinical investigation 120, 1016-1025. Matsuura, K., Jigami, T., Taniue, K., Morishita, Y., Adachi, S., Senda, T., Nonaka, A., Aburatani, H., Nakamura, T., and Akiyama, T. (2011). Identification of a link between Wnt/beta-catenin signalling and the cell fusion pathway. Nature communications 2, 548. McMahon, A.P., and Moon, R.T. (1989). Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075-1084. Nusse, R. (2012). Wnt signaling. Cold Spring Harbor perspectives in biology 4. Nusse, R., and Varmus, H.E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99-109. Nusslein-Volhard, C., and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801. Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., Czerwenka, K., Husslein, P., and Knofler, M. (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. The American journal of pathology 168, 1134-1147. Port, F., Hausmann, G., and Basler, K. (2011). A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion. EMBO reports 12, 1144-1152. Qiu, Q., Basak, A., Mbikay, M., Tsang, B.K., and Gruslin, A. (2005). Role of pro-IGF-II processing by proprotein convertase 4 in human placental development. Proceedings of the National Academy of Sciences of the United States of America 102, 11047-11052. Qiu, Q., Yang, M., Tsang, B.K., and Gruslin, A. (2004). Both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signalling are required in epidermal growth factor-induced human trophoblast migration. Molecular human reproduction 10, 677-684. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649-657. Schreiber, J., Enderich, J., and Wegner, M. (1998). Structural requirements for DNA binding of GCM proteins. Nucleic acids research 26, 2337-2343. Schreiber, J., Riethmacher-Sonnenberg, E., Riethmacher, D., Tuerk, E.E., Enderich, J., Bosl, M.R., and Wegner, M. (2000). Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Molecular and cellular biology 20, 2466-2474. Semenov, M.V., Habas, R., Macdonald, B.T., and He, X. (2007). SnapShot: Noncanonical Wnt Signaling Pathways. Cell 131, 1378. Semenov, M.V., Tamai, K., Brott, B.K., Kuhl, M., Sokol, S., and He, X. (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Current biology : CB 11, 951-961. Sonderegger, S., Haslinger, P., Sabri, A., Leisser, C., Otten, J.V., Fiala, C., and Knofler, M. (2010). Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology 151, 211-220. Sonderegger, S., Husslein, H., Leisser, C., and Knofler, M. (2007). Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28 Suppl A, S97-102. Speese, S.D., and Budnik, V. (2007). Wnts: up-and-coming at the synapse. Trends in neurosciences 30, 268-275. Tuerk, E.E., Schreiber, J., and Wegner, M. (2000). Protein stability and domain topology determine the transcriptional activity of the mammalian glial cells missing homolog, GCMb. The Journal of biological chemistry 275, 4774-4782. Vargas, A., Moreau, J., Landry, S., LeBellego, F., Toufaily, C., Rassart, E., Lafond, J., and Barbeau, B. (2009). Syncytin-2 plays an important role in the fusion of human trophoblast cells. Journal of molecular biology 392, 301-318. Wang, L.J., Cheong, M.L., Lee, Y.S., Lee, M.T., and Chen, H. (2012). High-temperature requirement protein A4 (HtrA4) suppresses the fusogenic activity of syncytin-1 and promotes trophoblast invasion. Molecular and cellular biology 32, 3707-3717. Wegner, M., and Riethmacher, D. (2001). Chronicles of a switch hunt: gcm genes in development. Trends in genetics : TIG 17, 286-290. Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., 3rd, and Nusse, R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448-452. Willert, K., and Nusse, R. (2012). Wnt proteins. Cold Spring Harbor perspectives in biology 4, a007864. Yamada, K., Ogawa, H., Honda, S., Harada, N., and Okazaki, T. (1999). A GCM motif protein is involved in placenta-specific expression of human aromatase gene. The Journal of biological chemistry 274, 32279-32286. Yang, C.S., Yu, C., Chuang, H.C., Chang, C.W., Chang, G.D., Yao, T.P., and Chen, H. (2005). FBW2 targets GCMa to the ubiquitin-proteasome degradation system. The Journal of biological chemistry 280, 10083-10090. Yu, C., Shen, K., Lin, M., Chen, P., Lin, C., Chang, G.D., and Chen, H. (2002). GCMa regulates the syncytin-mediated trophoblastic fusion. The Journal of biological chemistry 277, 50062-50068. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62118 | - |
| dc.description.abstract | 摘要
細胞的移行與入侵在人類胎盤發育過程中是重要的關鍵步驟。人類滋養層細胞分化為絨毛外滋養葉細胞後會移行進入子宮內膜並入侵子宮血管管壁,藉此促進母親與胎兒養分氧氣交換循環效率之提升。先前我們確立了特定在胎盤細胞表現的轉錄因子,GCM1,會轉錄活化標的基因,HtrA4,該標的基因轉譯為一可分解細胞外基質之蛋白酶,能促進胎盤細胞之入侵能力。而最近透由染色質免疫沉澱結合晶片分析技術的分析發現一個新的GCM1標的基因,Wnt10b,該蛋白已知為WNT蛋白家族之一員。由細胞移行能力檢測實驗結果可知在BeWo細胞中阻斷Wnt10b表現將抑制其移行能力;反之如果在JAR細胞培養液中加入Wnt10b重組蛋白則可促進細胞之移行。免疫組織染色結果也顯示,在早期與晚期之胎盤組織中,Wnt10b蛋白分別出現在錨定絨毛與母親蛻膜接觸,具有移行潛力的細胞柱位置以及絨毛外滋養層細胞。更進一步,透過西方墨點法以及免疫螢光染色,可以發現Wnt10b藉由影響小GTPase蛋白家族中Rac1與Cdc42的活性,產生細胞骨架重組現象。本篇論文之實驗結果顯示GCM1藉由調控Wnt10b表現使細胞骨架產生重組,藉此調控胎盤細胞之移行。 | zh_TW |
| dc.description.abstract | Abstract
Cell migration and invasion are essential for placental development. Human cytotrophoblasts may differentiate into extravillous trophoblasts (EVTs), which migrate and invade uterus to remodel uterine arteries and enhance the maternal-fetal circulation. Our lab has demonstrated that the placental transcription factor GCM1 promotes placental cell invasion via transactivation of high-temperature requirement A4 (HtrA4) gene expression. HtrA4 is a serine protease that cleaves the extracellular matrix protein fibronectin and facilitates placental cell invasion. Our lab has recently identified Wnt10b, which is a member of WNT family protein, as a novel target gene of GCM1 by ChIP-chip analysis. By cell migration assay, we demonstrated that Wnt10b knockdown reduces the migration activity of BeWo cells, whereas Wnt10b overexpression promotes JAR cell migration. Immunohistochemistry revealed that Wnt10b protein is expressed in the cell columns of first-trimester placenta and the EVTs of full-term placenta. Furthermore, we found that Wnt10b may activate small GTPases, Rac1 and Cdc42, to induce placental cell cytoskeleton remodeling and enhance cell migration. Our study reveals a novel GCM1-Wnt10b axis in regulation of placental cell migration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:28:44Z (GMT). No. of bitstreams: 1 ntu-102-R00b46027-1.pdf: 2357406 bytes, checksum: 5e15ef863b8d843b438dad3a21961922 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
目錄 i 圖表目錄 iii 中文摘要 iv 英文摘要 v 第一章 緒論 1.1 胎盤 1 1.2 GCM轉錄因子 3 1.3 WNT蛋白質家族 7 1.4 研究動機 11 第二章 材料與方法 2.1 構築重組質體 12 2.2 細胞株培養與轉染 14 2.3 慢病毒感染 15 2.4 SDS聚丙烯醯胺凝膠電泳 16 2.5 西方墨點法 16 2.6 定量及時聚合酶連鎖反應 17 2.7 Luciferase冷光報導基因活性檢測實驗 18 2.8 免疫組織染色 19 2.9 細胞移行能力檢測實驗 19 2.10 Rho蛋白家族-小GTPase活性檢測實驗 20 2.11 免疫螢光染色 20 第三章 實驗結果 3.1 GCM1轉錄因子調控胎盤細胞移行與Wnt10b基因表現 22 3.2 GCM1轉錄因子結合Wnt10b基因啟動子特定區域 22 3.3 分析Wnt10b 啟動子區域中-1.5~-2 kb片段 23 3.4 突變後之片段影響GCM1轉錄因子結合調控下游基因 24 3.5 GCM1轉錄因子在胎盤細胞調控Wnt10b表現 24 3.6 Wnt10b在胎盤組織中表現的位置 25 3.7 Wnt10b促進胎盤細胞的移行能力 26 3.8 Wnt10b活化WNT/平面細胞極化訊息路徑 26 第四章 討論與總結 29 第五章 圖表 33 第六章 參考文獻 48 圖表目錄 圖一 人類胎盤構造 33 圖二 WNT訊息路徑模式圖 34 圖三 GCM1轉錄因子調控胎盤細胞移行與Wnt10b基因表現 35 圖四 GCM1轉錄因子結合Wnt10b基因啟動子特定區域 37 圖五 分析Wnt10b啟動子區域中-1.5~-2 kb片段 38 圖六 突變後之片段影響GCM1轉錄因子結合調控下游基因 39 圖七 GCM1轉錄因子在胎盤細胞調控Wnt10b表現 40 圖八 Wnt10b在胎盤組織中表現的位置 41 圖九 Wnt10b促進胎盤細胞的移行能力 42 圖十 Wnt10b在胎盤細胞中不顯著影響典型WNT訊息路徑 43 圖十一 Wnt10b活化WNT/平面細胞極化訊息路徑 45 圖十二 GCM1調控Wnt10b進行平面細胞極化路徑促進細胞移行模式圖 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 胎盤 | zh_TW |
| dc.subject | 細胞骨架重組 | zh_TW |
| dc.subject | GCM1 | zh_TW |
| dc.subject | Wnt10b | zh_TW |
| dc.subject | Rac1/Cdc42 | zh_TW |
| dc.subject | 細胞移行 | zh_TW |
| dc.subject | cytoskeleton remodel | en |
| dc.subject | GCM1 | en |
| dc.subject | Rac1/Cdc42 | en |
| dc.subject | placenta | en |
| dc.subject | cell migration | en |
| dc.subject | Wnt10b | en |
| dc.title | Wnt10b作為GCM1轉錄因子之標的基因透過WNT/平面細胞極化訊息路徑調控胎盤細胞移行 | zh_TW |
| dc.title | Wnt10b, a novel target gene of GCM1, regulates placental cell migration through the WNT/PCP pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),李明亭(Ming-Ting Lee),張茂山(Mau-Sun Chang),張功耀 | |
| dc.subject.keyword | Wnt10b,GCM1,Rac1/Cdc42,胎盤,細胞移行,細胞骨架重組, | zh_TW |
| dc.subject.keyword | Wnt10b,GCM1,Rac1/Cdc42,placenta,cell migration,cytoskeleton remodel, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
