Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorYu-Feng Huangen
dc.contributor.author黃裕峯zh_TW
dc.date.accessioned2021-05-16T16:23:12Z-
dc.date.available2018-07-19
dc.date.available2021-05-16T16:23:12Z-
dc.date.copyright2013-07-19
dc.date.issued2013
dc.date.submitted2013-07-12
dc.identifier.citation[1] H. K. Onnes, Commun. Phys. Lab. Univ. Leiden 12, 120 (1911).
[2] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Physical Review Letters 58, 908 (1987).
[3] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
[4] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
[5] C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y. T. Wang, Q. Tao, G. H. Cao, and Z. A. Xu, Physical Review B 79, 054521(2009).
[6] Cao Wang, Linjun Li, Shun Chi, Zengwei Zhu, Zhi Ren, Yuke Li, Yuetao Wang, Xiao Lin, Yongkang Luo, Shuai Jiang, Xiangfan Xu, Guanghan Cao and Zhu’an Xu, Europhysics Letters, 83, 67006 (2008).
[7] T. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett. 83, 17002 (2008).
[8] Webpage “Properties, History, Applications and Challenges”, Coalition for the Commercial Application of Superconductors, Retrieved May 17, 2013, http://www.ccas-web.org/superconductivity/#image1
[9] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Physical Review 108, 1175 (1957).
[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos & A. A. Firsov, Nature 438, 197 (2005).
[11] L. D. Landau, Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11, 26 (1937).
[12] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Moronov, and A. K. Geim, Proc. Nat. Acad. Sci. U. S. A. 102, 10451 (2005).
[13] A. K. Geim, K. S. Novoselov, Nature Materials 6, 183 (2007).
[14] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4258 (2009).
[15] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21,787 (1933).
[16] Webpage “Researchers Find Magnetic Link to High-temperature Superconductivity”, Lori Ann White, Retrieved May 18, 2013, http://today.slac.stanford.edu/a/2011/02-18.htm.
[17] Webpage” Fichier: Magnetisation_and_superconductors.png”, Retrieved May 18, 2013, http://fr.wikipedia.org/wiki/Fichier:Magnetisation_and_superconductors.png.
[18] P. W Anderson, Physical Review Letters, 9, 309 (1962).
[19] Y. B. Kim, C. F. Hempstead and A. R. Stranad, Phys. Rev. 131, 2486 (1963).
[20] J.C. Loudon, P.A. Midgley, Ultramicroscopy, 109, 700, (2009).
[21] B. D. Josephson, Physics Letters 1, 251 (1962)
[22] Charles P. Poole, Jr., Horacio A. Farach, Richard J. Creswick, “Superconductivity”, (Academic Press, 1995).
[23] Webpage: http://postreh.com/vmichal/thesis/figures/figures.htm.
[24] Webpage” AC/DC Josephson Effects and the RCSJ Model”, Jukka Huhtamaki, Retrieved May 18, 2013,
http://www.phy.duke.edu/~hx3/physics/Josephson2.pdf
[25] M. Tinkham, “Introduction to Superconductivity”, 2nd, Chap.6, McGraw-Hill, (1996).
[26] Webpage “Basic Considerations” Alexander Rylyakov, Retrieved May 19, 2013,
http://rsfq1.physics.sunysb.edu/~sasha/docs/sasha/thesis/node6.html#RSJIV.
[27] P. Sudraud, G. Ben Assayag and M. Bon, J. Vac. Sci. Techn. B 6, 234 (1988).
[28] G. Deutscher and P.G. de Gennes, in: Superconductivity, ed. R.D. Parks (Marcel Dekker, New York, 1969) p. 1005.
[29] B. Ghyselen, R. Cabanel, S. Tyc, D.G. Crete, Z.H. Barber, J.E. Evetts, G. Ben Assayag, J. Gierak and A. Schuhl, Physica C 198, 215 (1992).
[30] J. Talvacchio, IEEE Trans. on Components, Hybrids, and Manufacturing Technology, 12, 21 (1989).
[31] M. S. Wire, R.W. Simon, J.A. Luine, K.P. Daly, S.B. Coons, A.E. Lee, R. Hu, J.F. Burch and C.E. Platt, IEEE Trans. Mag., 27, 3106 (1991).
[32] P. Boochand, R. N. Enzweiler, Ivan Zitkovsky, Solid State Communications, 63, 521 (1987).
[33] P. H. Hor, R. L. Meng, Y. Q. Wang, L. Gao, Z. J. Huang, J. Bechtold, K. Forster, and C. W. Chu, Physical Review Letters, 58, 1891 (1987)
[34] V. L. Ginzburg and L. D. Lndau, J. Exp. Theor. Phys. , U. S. S. R. , 20, 1064 (1950)
[35] X. Wang, S. R. Ghorbani, G. Peleckis, and S. Dou, Adv. Mater., 21, 236 (2009)
[36] P. W Anderson, Physical Review Letters, 9, 309 (1962).
[37] Y. B. Kim, C. F. Hempstead and A. R. Stranad, Phys. Rev. 131, 2486 (1963).
[38] B. Ghyselen, R. Cabanel, S. Tyc, D.G. Crete, Z.H. Barber, J.E. Evetts, G. Ben Assayag, J. Gierak and A. Schuhl, Physica C 198, 215 (1992)
[39] P. Boochand, R. N. Enzweiler, Ivan Zitkovsky, Solid State Communications, 63, 521 (1987).
[40] T. Sato, T. Moriki, S. Tanaka, A. Kanda, H. Goto, H. Miyazaki, S. Odaka, Y. Ootuka, K. Tsukagoshi, Y. Aoyagi, Physica E, 40, 1495 (2008)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6210-
dc.description.abstract在本篇論文會先對我們腔體最佳條件下的銪鋇銅氧(EuBCO)超導薄膜,做一些電性傳輸的量測分析。為了要確定複合超導體與石墨烯的製程,我們將會針對超導跟一般金屬的複合製程做一些探討跟量測。至今為止,所有複合超體導跟石墨烯的論文中,全部都是以低溫超導作為使用材料,這也就是為什麼我們使用EuBCO這樣的第二類高溫超導作為與石墨烯複合的材料的原因。我們藉此希望觀察到流過整個元件的超導電流,以及在超導體與石墨烯的介面發生安德烈夫反射現象的證據。期望因為低溫與高溫超導體在某些物理現象些微的不同,使我們的複合元件能表現出不同的物理現象。zh_TW
dc.description.abstractIn this thesis, we study the transport properties of the optimum Sputtering condition of the EuBCO superconducting films first. In order to ensure the validity of the superconductor-graphene-superconductor (SGS) structure, we will give some statements about the measuring process of the superconductor-normal metal-superconductor (SNS) structure. Until now, the low-temperature superconductors are used as electrodes for the SGS structure represented in the papers. That is why we combine EuBCO, Type-II high-temperature superconductor, and graphene to make the SGS structure. We may observe the supercurrent passing through the whole device and the phenomena of Andreev reflection between graphene and superconductor. Because of a little different physics between low and high- temperature superconductors, we expect it can represent different physics on our device.en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:23:12Z (GMT). No. of bitstreams: 1
ntu-102-R00222052-1.pdf: 1859852 bytes, checksum: fa1b289a363ed5fd16aaf4881e6f16a4 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents...........................................................................................................................iv
Chapter 1 Introduction................................................................................................1
1.1 Superconductor.........................................................................................................1
1.2 Graphene...................................................................................................................4
1.3 Motivation and Outline.............................................................................................6
Chapter 2 Physics of superconductivity......................................................................9
2.1 Meissner effect.........................................................................................................9
2.2 Type-II superconductors.........................................................................................11
2.3 Pinning potential energy.........................................................................................13
2.4 Josephson junction..................................................................................................14
2.5 RCSJ model and RSJ model...................................................................................18
Chapter 3 Experimental technique and sample fabrication...................................21
3.1 Four-terminal resistance measurement...................................................................21
3.2 Sputter system and the process of EuBCO film.....................................................22
3.3 Sample fabrication..................................................................................................26
Chapter 4 Results and discussions............................................................................31
4.1 Measurement of superconducting films.................................................................31
4.2 The SNS structure...................................................................................................43
4.3 The SGS structure...................................................................................................45
Chapter 5 Perspective.................................................................................................50
dc.language.isoen
dc.subject銪鋇銅氧zh_TW
dc.subject石墨烯zh_TW
dc.title銪鋇銅氧與石墨烯/高溫超導體複合系統之傳輸特性研究zh_TW
dc.titleTransport in EuBCO and hybrid graphene/high-temperature superconductor systemsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor王立民(Li-Min Wang)
dc.contributor.oralexamcommittee林立弘(Li-hung Lin)
dc.subject.keyword石墨烯,銪鋇銅氧,zh_TW
dc.subject.keywordgraphene,EuBCO,en
dc.relation.page52
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf1.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved