請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62107
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葛宇甯 | |
dc.contributor.author | Guan-De He | en |
dc.contributor.author | 何冠德 | zh_TW |
dc.date.accessioned | 2021-06-16T13:28:08Z | - |
dc.date.available | 2013-07-31 | |
dc.date.copyright | 2013-07-31 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-22 | |
dc.identifier.citation | 楊樹榮 (2005),『路基土壤之不飽和吸力特性及反覆載重下之力學行為』,博士論文,國立中央大學土木工程學系。
洪銘鴻 (2010),『土壤水分特性曲線應用於不飽和崩積土壤邊坡穩定分析之研究』,碩士論文,國立台灣科技大學營建工程學系。 黃渝紋 (2012),『三軸壓縮試驗探討蜂巢格網的圍束效應』,碩士論文,國立台灣大學土木工程學系。 劉家齊 (2012),『護坡工法之數值分析-以鐵立庫崩塌邊坡為例』,碩士論文,國立台灣大學土木工程學系。 ASTM D422-63, “Standard Test Method for Particle-Size Analysis of Soils,” ASTM International, West Conshohocken, PA, USA. ASTM D698-07, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” ASTM International, West Conshohocken, PA, USA. ASTM D854-06, “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,” ASTM International, West Conshohocken, PA, USA. ASTM D2166-06, “Standard Test Method for Unconfined Compressive Strength of Cohesive Soil,” ASTM International, West Conshohocken, PA, USA. ASTM D2216-05, “Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass,” ASTM International, West Con-shohocken, PA, USA. ASTM D3080-04, “Standard Test Method for Direct Shear Test of Soils Under Consol-idated Drained Conditions,” ASTM International, West Conshohocken, PA, USA. ASTM D4318-05, “Standard Test Methods for Liquid Limit, Plastic Limit, and Plastic-ity Index of Soils,” ASTM International, West Conshohocken, PA, USA. ASTM D4767-11, “Standard Test Method for Consolidated Undrained Triaxial Com-pression Test for Cohesive Soils,” ASTM International, West Conshohocken, PA, USA. ASTM D6836-02, “Standard Test Methods for Determination of the Soil Water Char-acteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge,” ASTM International, West Conshohocken, PA, USA. Bandyopadhyay, K., and Bhattacharjee, S., 2010, “Indirect tensile strength test of stabi-lized fly ash,” Indian Geotechnical Conference, pp. 279-282. Bishop, A. W., 1954, “The use of pore water coefficients in practice,” Geotechnique, Vol. 4, No. 4, pp. 148-152. Carmona, S., 2009, “Effect of specimen size and loading conditions on indirect tensile test results,” Materiales De Construccion, Vol. 59, No. 294, pp. 7-18. Chen, W. F., 1970, “Double Punch Test for Tensile Strength of Concrete,” Journal of the American Concrete Institute, Vol. 67, pp. 993-995. Consoli, N. C., Prietto, P. D. M., Carraro, J. A. H., and Heineck, K. S., 2001, “Behavior of compacted soil-fly ash-carbide lime mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 9, pp. 774-782. Consoli, N. C., Cruz, R. C., Floss, M. F., and Festugato, L., 2010, “Parameters control-ling tensile and compressive strength of artificially cemented sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 5, pp. 759-763. Das, B. M., and Dass, R. N., 1995, “Lightly cemented sand in tension and compres-sion,” Geotechnical and Geological Engineering, Vol. 13, No. 3, pp. 169-177. Fahimifar, A., and Malekpour, M., 2012, “Experimental and numerical analysis of indi-rect and direct tensile strength using fracture mechanics concepts,” Bulletin of En-gineering Geology and the Environment, Vol. 71, No. 2, pp. 269-283. Fang, H. Y., and Chen, W. F., 1972, “Further study of double punch test for tensile strength of soils,” Southeast Asian Conference on Soil Engineering, 3rd, pp. 211-215. Fang, H. Y., and Fernandez, J., 1981, “Determination of tensile strength of soils by un-confined-penetration test,” ASTM STP 740, pp. 130–144. Fredlund, D.G., and Morgenstern, N.R., 1977, “Stress state variables for unsaturated soils,” Journal of Geotechnical Engineering, Vol. 103, No. 5, pp. 447-456. Fredlund, D. G., and Morgenstern, N. R., 1978, “The Shear Strength of Unsaturaed Soils,” Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321. Fredlund, D. G., Xing, A., and Huang, S., 1994, “Predicting the permeability function for unsaturated soils using the soil-water characteristic curve,” Canadian Geotech-nical Journal, Vol. 31, No. 3, pp. 521-532. Hector, C., 1993, “Factors affecting the tensile strength of soil aggregates,” Soil and Tillage Research, Vol. 28, No. 1, pp. 15-25. Ibarra, S. Y., McKyes, E., and Broughton, R. S., 2005, “Measurement of tensile strength of unsaturated sandy loam soil,” Soil & Tillage Research, Vol. 81, No. 1, pp. 15-23. Krahn, J., and Fredlund, D. G., 1972, “On total, matric and osmotic suction,” Soil Sci-ence, Vol. 114, No. 5, pp. 339-348. Kim, T. H., and Hwang, C. S., 2003, “Modeling of tensile strength on moist granular earth material at low water content,” Engineering Geology, Vol. 69, No. 3-4, pp. 233-244. Kim, T. H., Kim, C. K., Jung, S. J., and Lee, J. H., 2007, “Tensile strength characteris-tics of contaminated and compacted sand-bentonite mixtures,” Environmental Ge-ology, Vol. 52, No. 4, pp. 653-661. Kim, T. H., Kim, T. H., Kang, G. C., and Ge, L., 2012, “Factors influencing crack-induced tensile strength of compacted soil,” Journal of Materials in Civil Engineering, Vol. 24, No. 3, pp. 315-320. Li, X.J., Liu, Y.R., Jiang, L.H., and Tang, Y.C., 2011, “Determination of tensile strength of compacted loess by double punch test,” Advanced Materials Research, Vol. 194-196, pp. 1176-1179. Lu, N., and Likos, W. J., 2006, “Suction stress characteristic curve for unsaturated soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 2, pp. 131-142. Lu, N., Godt, Jonathan W., and Wu, David T., 2010, “A closed-form equation for effective stress in unsaturated soil,” Water Resources Research, Vol. 46, doi: 10.1029/2009WR008646 Mesbah, A., Morel, J. C., Walker, P., and Ghavami, K., 2004, “Development of a direct tensile test for compacted earth blocks reinforced with natural fibers,” Journal of Materials in Civil Engineering, Vol. 16, No. 1, pp. 95-98. Nahlawi, H., Chakrabarti, S., and Kodikara, J., 2004, “A direct tensile strength testing method for unsaturated geomaterials,” Geotechnical Testing Journal, Vol. 27, No. 4, pp. 356-361. Ramanathan, B., and Raman, V., 1974, “Spilt tensile strength of cohesive soils,” Soils and Foundations, Vol. 14, No. 1, pp. 71-76. Tamrakar, S. B., Mitachi, T., and Toyosawa, Y., 2007, “Measurement of soil tensile strength and factors affecting its measurements,” Soils and Foundations, Vol. 47, No. 5, pp. 911-918. Tang, G. X., and Graham, J., 2000, “A method for testing tensile strength in unsaturated soils,” Geotechnical Testing Journal, Vol. 23, No. 3, pp. 377-382. Fredlund, D. G. and Rahardjo, H., 1993, Soil mechanics for unsaturated soils,” New York, pp. 217-259. Chen, W. F., 1975, “Limit analysis and soil plasticity,” New York: Elsevier Scientific Pub, pp. 501-541. Heibrock, G., Zeh, R. M., and Witt, K. J., 2005, “Tensile strength of compacted clays,” Unsaturated Soils: Experimental Studies, Vol. 93, pp. 395-412. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62107 | - |
dc.description.abstract | 由於土壤之張力強度遠比壓力強度小且欠缺一個確切性的試驗來求得,因此在大地工程中之設計與分析往往忽略土壤之張力強度。根據許多研究指出,土壤之張力強度有一定的重要性,尤其是應用在預測土壩的裂縫行為、機場跑道或公路的鋪面以及邊坡穩定分析中的張力裂縫。
在前人的研究中,有許多決定土壤張力強度的方法,主要分為直接法和間接法。直接法主要是以直接拉力試驗 (direct tensile test) 為主,而間接法常見的有劈裂試驗 (split tensile test) 與無圍壓貫入試驗 (unconfined penetration test)。 無圍壓貫入試驗之張力強度是由Chen在1975年所推導出的極限分析理論求得,其是將摩擦角、無圍壓縮強度、試體直徑、試體高度、貫入棒直徑、試驗所得最大軸向壓力及 'K值' 代入公式。Fang and Fernandez在1981年建議K值為固定值,但K值在理論中是由bH/a2、脆度 (qu/σt) 和摩擦角決定,故其量值應隨材料性質不同而改變,而非建議之固定值,因此本研究決定以疊代法找出各試驗之K值,再計算張力強度。 本研究以石英砂85 % 及高嶺土15 % 混合為試驗土樣,並進行兩部分的試驗,第一部分試驗以疊代法計算無圍壓貫入試驗之張力強度,並探討試體直徑、試體細長比及貫入棒直徑對無圍壓貫入試驗之影響。第二部分試驗以Lu等學者在2006和2010年的不飽和土壤有效應力架構,將各含水量在無圍壓貫入試驗之有效張力強度 (即張力強度之有效應力σpt') 與不飽和破壞包絡線之有效張力強度 (σft') 進行比較,以驗證無圍壓貫入試驗之準確性。 根據無圍壓貫入試驗的結果,試體直徑對無圍壓貫入試驗之影響不大,且試體細長比對無圍壓貫入試驗之影響也不大,但是當試體細長比為1.5時,無圍壓貫入試驗可能會受試體破裂行為而造成影響,而貫入棒直徑對無圍壓貫入試驗之影響很大。根據Lu等學者在2006和2010年的不飽和土壤有效應力架構,計算不同含水量在無圍壓貫入試驗之有效張力強度與在不飽和破壞包絡線下有效張力強度。結果顯示,σpt' 在不同含水量下之變異性很小,故不飽和土壤之有效張力強度並不會受含水量影響。在含水量為8.1、11.1 % 時,無圍壓貫入試驗與不飽和破壞包絡線之有效張力強度相當接近,代表無圍壓貫入試驗有很高之準確性。 | zh_TW |
dc.description.abstract | Compared to the compressive or shear strength of soil, its tensile strength is generally assumed to be zero, or insignificant, in geotechnical engineering practice because of its relatively small value and lack of a satisfying laboratory technique. The tensile strength of soil is an important parameter in the design of geosystems, where tensile cracks contribute to progressive failure of landslides, stablility of dams, highway embankments, and other earth structures.
In the literature, there are many methods of determining the tensile strength of soil. They can be categorized into direct and indirect methods. In the direct methods, the direct pull-out is used for tensile strength determination. In the indirect method, the split tensile test and the unconfined penetration test are often used for tensile strength determination. The tensile strength of the unconfined penetration test was developed within the theory of plastic limit analysis. Information including friction angle, unconfined compressive strength, the diameter of specimen, the height of specimen, the diameter of punch, maximum axial stress of the test and the 'K value' is required for calculating tensile strength in the developed formula. The K value was suggested to a fixed value by Fang and Fernandez’s research in 1981. However, the K value should be determined by testing configuration including the sizes of the specimen and punch (bH/a2), the ratio of the unconfined compressive strength to the tensile strength (qu/σt) and friction angle in the plastic limit analysis. In this study, compacted clayed sand specimens (with 85 % of sand and 15 % of clay by weight) were prepared for a series of the tests. The first part of the unconfined penetration tests is used to determine the tensile strength by iterative method. The effect of specimen diameter, the specimen slenderness ratio and the punch diameter are evaluated and discussed. The second part of the tests is based on the framework unsaturation soil mechanics, where the effective tensile strength, is respectively obtained by unconfined penetration tests (σpt') and unsaturated failure envelopes (σft'), at various water contents. Furthermore, it verifies the accuracy of unconfined penetration test. According to the result of the unconfined penetration tests, the diameters of the samples and the slenderness ratios of the samples do not affect significantly. However, the diameter of punches does influence the test. According to the result of comparing the effective tensile strength, which are calculated by unconfined penetration tests and the unsaturated failure envelopes, at various water contents, the σpt' varies slightly at different water contents, indicating the effective tensile strength of unsaturated soil will not be affected by the water contents. The σpt' and σft' are quite close when the water content is equal to 8.1 and 11.1 percent, which suggests that the unconfined penetration test be quite accurate in determining the tensile strength of lightly cemented sand. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:28:08Z (GMT). No. of bitstreams: 1 ntu-102-R98521122-1.pdf: 5538704 bytes, checksum: 94921b922e0b98b6219cfa78806db4c8 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT V 目錄 VII 表目錄 X 圖目錄 XII 符號表 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究方法 2 1.4 論文架構 2 第二章 文獻回顧 5 2.1 土壤之張力強度試驗 5 2.1.1 直接法 5 2.1.2 間接法 7 2.2 無圍壓貫入試驗 9 2.3 不飽和土壤 11 2.3.1 不飽和土壤之含水特性 11 2.3.2 土壤水分特性曲線 12 2.3.3 不飽和土壤有效應力架構 13 2.4 小結 16 第三章 試驗材料與研究規劃 38 3.1 基本物理性質試驗 38 3.1.1 含水量試驗 (Moisture Content Test) 39 3.1.2 比重試驗 (Specific Gravity Test) 39 3.1.3 粒徑分析試驗 (Particle Size Analysis Test) 39 3.1.4 阿太堡限度試驗 (Atterberg Limits Test) 40 3.2 試驗規劃 40 3.2.1 直接剪力試驗 (Direct Shear Test) 41 3.2.2 無圍壓縮試驗 (Unconfined Compression Test) 42 3.2.3 無圍壓貫入試驗 (Unconfined Penetration Test) 43 3.2.4 三軸壓密不排水試驗 (Triaxial Consolidated Undrained Test) 44 3.2.5 壓力平板試驗 (Pressure Plate Test) 48 第四章 試驗結果 66 4.1 第一部分試驗 66 4.1.1 直接剪力試驗 (Direct Shear Test) 66 4.1.2 無圍壓縮試驗 (Unconfined Compression Test) 66 4.1.3 無圍壓貫入試驗 (Unconfined Penetration Test) 67 4.2 第二部分試驗 68 4.2.1 直接剪力試驗 (Direct Shear Test) 69 4.2.2 無圍壓縮試驗 (Unconfined Compression Test) 69 4.2.3 無圍壓貫入試驗 (Unconfined Penetration Test) 69 4.2.4 三軸壓密不排水試驗 (Triaxial Consolidated Undrained Test) 70 4.2.5 壓力平板試驗 (Pressure Plate Test) 70 第五章 討論與分析 94 5.1 土樣RSC無圍壓貫入試驗結果與討論 94 5.1.1 經驗法與疊代法之比較 94 5.1.2 試體直徑對無圍壓貫入試驗之影響 95 5.1.3 試體細長比對無圍壓貫入試驗之影響 96 5.1.4 貫入棒直徑對無圍壓貫入試驗之影響 98 5.2 土樣GSC無圍壓貫入試驗結果與討論 99 5.3 不飽和土壤之有效張力強度 99 5.3.1 無圍壓貫入試驗之有效張力強度 100 5.3.2 不飽和破壞包絡線之有效張力強度 100 5.3.3 綜合討論 100 第六章 結論與建議 110 6.1 土樣RSC-無圍壓貫入試驗結論 110 6.2 不飽和土樣GSC-有效張力強度結論 111 6.3 建議 111 參考文獻 112 附錄 A 無圍壓貫入試驗-極限分析理論推導 117 附錄 B 無圍壓貫入試驗儀器校正資料 119 附錄 C 三軸試驗儀器校正資料 120 | |
dc.language.iso | zh-TW | |
dc.title | 低黏性砂土張力強度之探討 | zh_TW |
dc.title | Tensile Strength of Lightly Cemented Sand through Unconfined Penetration Tests | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 卿建業,歐章煜,楊國鑫 | |
dc.subject.keyword | 張力強度,無圍壓貫入試驗,貫入棒,不飽和土壤有效應力,吸應力, | zh_TW |
dc.subject.keyword | tensile strength,unconfined penetration test,punch,unsaturated soil,suction stress, | en |
dc.relation.page | 122 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-23 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。