Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瓊如(Chiung-Ju Liu)
dc.contributor.authorKuang-Ru Wuen
dc.contributor.author吳侊儒zh_TW
dc.date.accessioned2021-06-16T13:27:28Z-
dc.date.available2013-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation[B,F,G] M.Beals, C.Fe erman and R.Grossman, Strictly pseudoconvex domains
in Cn, Bull.AMS 8 (1983), 125 - 322.
[C] D. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and
geometry in several complex variables (Katata, 1997) 1-23, Birhauser, Boston,
1999.
[D] S.Donaldson Scalar curvature and projective embeddings, I Jour. Dierential
Geometry 59 479-522 2001
[C,D,S 1] Kahler-Einstein metrics on Fano manifolds, I: approximation of
metrics with cone singularities.
[C,D,S 2] Kahler-Einstein metrics on Fano manifolds, II: limits with cone
angle less than 2 .
[C,D,S 3] Kahler-Einstein metrics on Fano manifolds, III: limits as cone angle
approaches 2 and completion of the main proof.
[K] Steven G. Krantz, Function theory of several complex variables, New
York:Wiley, 1982.
[L] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau
- Zelditch, Amer. J. Math. 22(2) (2000), 235-273.
[M. K] James Morrow, Kunihiko Kodaira, Comlpex manifolds, Providence,
R.I.:AMS Chelsea Pub., 2006
[R]W. Ruan, Canonical coordinates and Bergman metrics, Comm Anal.Geom.
6(1998), 589-631.
[Ran] R. Michael Range, Holomorphic functions and integral representations
in several complex variables, New York:Springer-Verlag, c1986.
[T] G. Tian, On a set of polarized Kahler metrics on algebraic manifolds, J.
Di erential Geom. 32 (1990), 99-130.
[W] R. O. Jr.Wells, Di erential analysis on complex manifolds. Second edition.
GTM 65. Springer (1980).
[Z] S. Zelditch, Szego kernel and a theorem of Tian, Internat. Math. Res.
Notices 6 (1998), 317-331.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62095-
dc.description.abstract這篇文章主要是討論兩種不同方法推得一漸近展開,一個方法是使用偏微分方程,另一則是複幾何。我簡化、修改S. Zelditch和Z. Lu 在推得此漸近展開的證明。主要的目標是描述漸近展開的行為,像是它和流形間的關係,以及比較兩種方法。zh_TW
dc.description.abstractTwo methods about asymptotic expansion of sections are studied in this note. One is by PDE, the other is by complex geometry. I simplify and modify some proofs in the papers by S. Zelditch and Z. Lu. The main goal is to describe the behavior of the expansion such as how the expansion relates to the underlying manifold, and to compare these two different methods.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:27:28Z (GMT). No. of bitstreams: 1
ntu-102-R00221011-1.pdf: 379782 bytes, checksum: b005f81adcd4ad8b286e555c58c11eb1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1. Introduction--------------------------------1
2. line bundle to circle bundle----------------3
3. peak section and iteration process----------7
4. references----------------------------------15
dc.language.isoen
dc.subject漸近展開zh_TW
dc.subjectasymptotic expansionen
dc.titleSzego kernel的漸近展開zh_TW
dc.titleA note on an asymptotic expansion of the Szego kernelen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王文才,蔡炎龍
dc.subject.keyword漸近展開,zh_TW
dc.subject.keywordasymptotic expansion,en
dc.relation.page16
dc.rights.note有償授權
dc.date.accepted2013-07-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
370.88 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved