請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62095完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉瓊如(Chiung-Ju Liu) | |
| dc.contributor.author | Kuang-Ru Wu | en |
| dc.contributor.author | 吳侊儒 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:27:28Z | - |
| dc.date.available | 2013-07-26 | |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-23 | |
| dc.identifier.citation | [B,F,G] M.Beals, C.Fe erman and R.Grossman, Strictly pseudoconvex domains
in Cn, Bull.AMS 8 (1983), 125 - 322. [C] D. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and geometry in several complex variables (Katata, 1997) 1-23, Birhauser, Boston, 1999. [D] S.Donaldson Scalar curvature and projective embeddings, I Jour. Dierential Geometry 59 479-522 2001 [C,D,S 1] Kahler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities. [C,D,S 2] Kahler-Einstein metrics on Fano manifolds, II: limits with cone angle less than 2 . [C,D,S 3] Kahler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2 and completion of the main proof. [K] Steven G. Krantz, Function theory of several complex variables, New York:Wiley, 1982. [L] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau - Zelditch, Amer. J. Math. 22(2) (2000), 235-273. [M. K] James Morrow, Kunihiko Kodaira, Comlpex manifolds, Providence, R.I.:AMS Chelsea Pub., 2006 [R]W. Ruan, Canonical coordinates and Bergman metrics, Comm Anal.Geom. 6(1998), 589-631. [Ran] R. Michael Range, Holomorphic functions and integral representations in several complex variables, New York:Springer-Verlag, c1986. [T] G. Tian, On a set of polarized Kahler metrics on algebraic manifolds, J. Di erential Geom. 32 (1990), 99-130. [W] R. O. Jr.Wells, Di erential analysis on complex manifolds. Second edition. GTM 65. Springer (1980). [Z] S. Zelditch, Szego kernel and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317-331. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62095 | - |
| dc.description.abstract | 這篇文章主要是討論兩種不同方法推得一漸近展開,一個方法是使用偏微分方程,另一則是複幾何。我簡化、修改S. Zelditch和Z. Lu 在推得此漸近展開的證明。主要的目標是描述漸近展開的行為,像是它和流形間的關係,以及比較兩種方法。 | zh_TW |
| dc.description.abstract | Two methods about asymptotic expansion of sections are studied in this note. One is by PDE, the other is by complex geometry. I simplify and modify some proofs in the papers by S. Zelditch and Z. Lu. The main goal is to describe the behavior of the expansion such as how the expansion relates to the underlying manifold, and to compare these two different methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:27:28Z (GMT). No. of bitstreams: 1 ntu-102-R00221011-1.pdf: 379782 bytes, checksum: b005f81adcd4ad8b286e555c58c11eb1 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1. Introduction--------------------------------1
2. line bundle to circle bundle----------------3 3. peak section and iteration process----------7 4. references----------------------------------15 | |
| dc.language.iso | en | |
| dc.subject | 漸近展開 | zh_TW |
| dc.subject | asymptotic expansion | en |
| dc.title | Szego kernel的漸近展開 | zh_TW |
| dc.title | A note on an asymptotic expansion of the Szego kernel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王文才,蔡炎龍 | |
| dc.subject.keyword | 漸近展開, | zh_TW |
| dc.subject.keyword | asymptotic expansion, | en |
| dc.relation.page | 16 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 370.88 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
