請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62090完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳 | |
| dc.contributor.author | Bor-Ting Jong | en |
| dc.contributor.author | 鍾博婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:27:12Z | - |
| dc.date.available | 2013-09-01 | |
| dc.date.copyright | 2013-07-30 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-23 | |
| dc.identifier.citation | 1.Arakawa, A., 2004: The cumulus parameterization problem: past, present, and future. J. Climate, 17, 2493-2525.
2.Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674-701. 3.Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, doi:17810.11029/12006GL026672. 4.Back, L. E., and C. S. Bretherton, 2009a: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 4182-4196. 5.Back, L. E., and C. S. Bretherton, 2009b: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 6477-6497. 6.Betts, A. K., 1986: A new convective adjustment scheme. Part I: observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-691. 7.Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-709. 8.Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616-2631. 9.Chou, C., T.-C. Wu, and P.-H. Tan, 2013: Changes in gross mosit stability in the tropics under global warming. Climate Dyn. (In press) 10.Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. 11.Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmosphere. Quart. J. Roy. Meteor. Soc., 120, 1111-1143. 12.Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447-462. 13.Hirota, N., Y. N. Takayabu, M. Watanabe, and M. Kimoto, 2011: Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J. Climate, 24, 4859-4873. 14.Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibirum. J. Atmos. Sci., 64, 1467-1487. 15.Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 1665-1683. 16.Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397-2418. 17.Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP_DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. 18.Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418-2436. 19.Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 2825-2838. 20.Neelin, J. D., 1989: On the interpretation of the Gill model. J. Atmos. Sci., 46, 2466-2468. 21.Neelin, J. D., 1997: Implications of convective quasi-equilibria for the large-scale flow. The Physics and Parameteriztion of Moist Atmospheric Convection, Smith R. K., Ed., Elsevier, Amsterdam, 413-446. 22.Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3-12. 23.Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden-Julian Oscillation. Part I : analytical theory. J. Atmos. Sci., 51, 1876-1894. 24.Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model – formulation. J. Atmos. Sci., 57, 1741-1766. 25.Neggers, R. A. J., J. D. Neelin, and B. Stevens, 2007: Impact mechanisms of shallow cumulus convection on tropical climate dynamics. J. Climate, 20, 2623-2642. 26.O'Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 75-90. 27.Raymond, D. J., S. L. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 1-20. 28.Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's modern-era retrospective analysis for research and appications. J. Climate, 24, 3624-3648. 29.Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057. 30.Sobel, A. H., 2007: Simple models of ensemble-averaged precipitation and surface wind, given the SST. The Global Circulation of the Atmosphere, Schneider T., and A. H. 31.Sobel, Eds., Princeton University Press, 219-251. Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertopircal convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comput. Fluid Dyn., 20, 323-350. 32.Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605-643. 33.Stevens, B., J. J. Duan, J. C. McWilliams, M. Munnich, and J. D. Neelin, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. J. Climate, 15, 30-44. 34.Su, H., and J. D. Neelin, 2002: Teleconnection mechanisms for tropical Pacific descent anomalies during El Nino. J. Atmos. Sci., 59, 2694-2712. 35.Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 2030-2046. 36.Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. v. Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. Geophys. Res. Lett., 103, 14241-14259. 37.Yu, J.-Y., and J. D. Neelin, 1997: Analytic approximations for moist convectively adjusted regions. J. Atmos. Sci., 54, 1054-1063. 38.Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 1354-1372. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62090 | - |
| dc.description.abstract | 本研究利用垂直積分水氣收支及濕靜能收支探討淺對流過程和深對流過程對於熱帶降水的影響。其中濕靜能收支分析中,利用粗濕穩定度(Gross moist stability, M)分析淺深對流環流各自在熱帶大氣中所扮演的角色。M過去主要使用於探討深對流過程,因此本研究目的之一即求得淺對流過程的M。
將垂直運動之垂直結構分成淺對流模及深對流模,其中淺對流模為所有邊界層輻合所產生的過程;深對流模則為自由大氣因具有不穩定度受到激發所產生的深對流過程。透過兩對流模的垂直水氣平流及垂直濕靜能平流探討各自在收支中的情形,其中利用多變量線性迴歸求得各對流模之M、粗乾穩定度及粗濕分層度。 水氣收支分析中,深對流模的垂直水氣平流在SST高的地方有較大貢獻;淺對流模的垂直水氣平流在對流地區有很大的貢獻,尤其SST梯度大的地方,因此淺對流模在降水的水氣供應上扮演了重要的角色。從濕靜能收支觀點,M的正負號決定了對流的角色,淺對流模之M (M1)為負值,即著其環流輸入濕靜能到大氣柱中,增加大氣的不穩定度;深對流模之M (M2)為正值,表示其環流將大氣中的濕靜能輸出,將大氣調整回穩定狀態。因此淺對流模所扮演的角色和淨熱通量相似,皆可視為自由大氣的熱力強迫項。M主要受到低層水氣和對流高度影響:淺對流模之M (M1)主要和低層水氣呈負相關,與對流高度的關係較小;而深對流模之M (M2)因低層水氣和對流高度兩個效應的抵消,和邊界條件無明顯關係。 透過本研究從水氣及濕靜能觀點能更進一步了解淺對流過程及深對流過程在熱帶大氣中所扮演的角色,並且本研究也檢視了兩對流過程之M的特徵。 | zh_TW |
| dc.description.abstract | Column-integrated moisture and moist static energy (MSE) budgets are used to examine the roles of shallow and deep convective processes in the tropical precipitation. In this study, the gross moist stability (M), usually used for deep convection, is also derived for shallow convection. The roles of shallow and deep convective processes in MSE budget are analyzed by the sign of M.
Vertical structure of vertical velocity is decomposed into a shallow-mode, responsible for all boundary layer convergence, and a deep-mode, driven by atmospheric instability. Vertical moisture and MSE advections are used to examine the effects of the shallow- and deep-mode in the tropical hydrological cycle. Also, a multiple linear regression is used to derive M, gross dry stratification (Ms), and gross moisture stratification (Mq) of each mode. The moisture budget shows that the vertical moisture advection of the deep-mode contributes more moisture to precipitation over regions where SSTs are high, while the vertical moisture advection of the shallow-mode supplies moisture over convective regions, with the most over regions where SST gradients are strong. Therefore, shallow-mode plays an important role to supply moisture for precipitation. In the MSE budget, the sign of M determines its role in tropical circulation. M of the shallow-mode (M1) is usually negative, indicating that the circulation associated with the shallow-mode tends to import MSE and destabilizes the atmosphere. On the other hand, M of the deep-mode (M2) is positive, indicating that the circulation associated with the deep-mode tends to export MSE and stabilize the atmosphere. Hence, the shallow-mode, similar with a net-flux term, can be treated as a forcing to free atmosphere. M is mainly controlled by low-level moisture and cloud-top effects. M of the shallow-mode (M1) is negatively related to low-level moisture, while M of the deep-mode (M2) does not have a clear relationship with lower boundary condition, due to a strong cancellation between low-level moisture and cloud-top effects. In this study, the roles of shallow and deep convective processes in the tropics are better understood through both moisture and MSE views. Moreover, the characteristics of M associated with two convective processes are also examined. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:27:12Z (GMT). No. of bitstreams: 1 ntu-102-R00229003-1.pdf: 45550643 bytes, checksum: a24450300bbc2fd18b6f0377f53a1ff8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV 目錄 VI 圖表目錄 VIII 第一章 前言 1 第二章 研究方法與資料 6 2.1 方程式與研究方法 6 2.1.1 方程式 6 2.1.2 研究方法 8 2.2 資料 10 2.3 討論 12 第三章 水氣收支 14 3.1 方程式 14 3.2 水氣收支 15 3.2.1 不同方法與資料之比較 15 3.2.2 分項貢獻 16 3.2.3 討論與延伸 19 第四章 淺對流和深對流過程之粗濕穩定度 22 4.1 粗濕穩定度 22 4.2 濕靜能及乾靜能收支 25 4.2.1 濕靜能收支 25 4.2.2 乾靜能收支 26 4.2.3 淺深對流過程對於能量收支的影響 27 4.3 淺對流及深對流過程之粗濕穩定度 29 4.3.1 M1 & M2 29 (1) M1 30 (2) M2 31 4.3.2 Ms & Mq 32 (1) Ms 32 (2) Mq 33 4.4 與大尺度環境場的關係 33 4.4.1 SST 33 4.4.2 水氣 35 4.4.3 SST梯度 36 第五章 討論 38 5.1 物理意義 38 5.2 與Yu et al. 1998及Chou et al. 2013比較 40 5.3 與Back and Bretherton 2009b比較 42 第六章 結論與未來工作 45 6.1 結論 45 6.2 未來工作 47 參考文獻 50 圖表 54 附錄1 利用EOF法中的線性轉換過程 78 附圖 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 淺對流過程 | zh_TW |
| dc.subject | 深對流過程 | zh_TW |
| dc.subject | 熱帶降水 | zh_TW |
| dc.subject | 水氣 | zh_TW |
| dc.subject | 濕靜能 | zh_TW |
| dc.subject | 粗濕穩定度 | zh_TW |
| dc.subject | moist static energy | en |
| dc.subject | shallow convective process | en |
| dc.subject | deep convective process | en |
| dc.subject | gross moist stability | en |
| dc.subject | tropical precipitation | en |
| dc.subject | moisture | en |
| dc.title | 淺對流及深對流過程對於熱帶降水的影響 | zh_TW |
| dc.title | Modulation of Tropical Precipitation by Shallow and Deep Convective Processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林和,隋中興,余嘉裕 | |
| dc.subject.keyword | 淺對流過程,深對流過程,熱帶降水,水氣,濕靜能,粗濕穩定度, | zh_TW |
| dc.subject.keyword | shallow convective process,deep convective process,tropical precipitation,moisture,moist static energy,gross moist stability, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 44.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
