Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑
dc.contributor.authorChun-Ya Xuen
dc.contributor.author徐淳雅zh_TW
dc.date.accessioned2021-06-16T13:26:31Z-
dc.date.available2015-07-31
dc.date.copyright2013-07-31
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation參考文獻
[1] Miyasaka K C, Daniel D M, Stone M L, P Hirshman.The incidence of knee
ligament injuries in the general population. American Journal of Knee Surgery,
1991, 3-8.
[2] Fank C , Woo S L , Amiel D , Harwood f , Gomez M , Akeson W. Medial collateral ligament healing. A multidisciplinary assessment in rabbits.
American Journal of Sport Medicine 11 (6), 379-389.
[3] Indelicato P A . Non-operative treatment of complete tears of the medial collateral ligament of knee. Journal of Bone and joint Surgery─American Volume 65, 1983(3), 323-329.
[4] Jokl P , Kaplan N, Stovell P, Keggi K.Non-operative treatment of severe injuries to the medial and anterior cruciate ligaments of knee. Journal of Bone and joint Surgery─American Volume 66, 1984 (5), 741-744.
[5] Kannus P. Long-term results of conservatively treated medial collateral ligament injuries of the knee joint. Clinical Orthopaedic, 1988 (226), 103-112.
[6] Kannus P , Jarvinen M. Conservatively treated tears of the anterior cruciate ligaments. Long-term results. Journal of Bone and joint Surgery American Volume 69, 1987 (7), 1007-1012.
[7] Hirshman H P, Daniel D M, Miyasaka K. The fate of the unoperated knee ligaments injuries. In: Danil, D.A.W., O’Connor, j.(Eds), Knee ligaments: structure, Function, Injury and Repair. Raven Press, 1990, 481-503.
[8] Goldblatt J P, Fitzsimmons S E, Balk E, Richmond J C. Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. J Arthoscopic Rel Surg, 2005 (21), 791-803.
[9] Vunjak N G, Altman G, Horan R, Kaplan D L. Tissue engineering of ligaments. Ann Rev Biomed Eng, 2004 (6), 56-131.
[10] Guidoin M F, Maros Y, Bejur J, Poddevin N, King M W, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials,2000 (21), 61-74.
[11] A. Formhals. US Patent.,1975, 504.
[12] Smith L A, Ma P X. Nano-fibers scaffold for tissue engineering. Colloids Surf B Biointerfaces, 2004 (3), 125-131.
[13] Caplan A I. Tissue Engineering Designs for the Future: New Logics, Old Molecules. Tissue Engineering, 2000(6) , 1-8.
[14] Ranieri C, Beatrice D, Paolo G, Rodolfo Q. Tissue engineering and cell therapy of cartilage and bone.Matrix Biology, 2003, 81–91.
[15] Fermor B, Urban J, Murray D. Proliferation and collagen synthesis of human ACL cells in vitro: effects of ascorbate -2-phosphate, dexamethasone and oxygen tension. Cell Biology International, 1998 (22), 635-640.
[16] Murray M M, Rice K, Wright R J. The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. Journal of Orthopaedic Research, 2003 (21), 238-244.  
[17] Moreau J E, Chen J, Bramono D S. Growth factor induced fibroblast differentiation from human bone marrow cells in vitro. Journal of Orthopaedic Research, 2005 (23),164-174.
[18] Attisano L, Wrana J L. Signal transduction by the TGF-beta superfamily. Science, 2002 (296), 1646-1647.
[19] Lo I K, Marehuk L, Hart D A. Messenger ribonucleic acid levels in disrupted human anterior cruciate ligaments. Clinical Orthopaedics & Related Research, 2003 (407), 249-258.  
[20] Marui T, Niyibizi C, Georgescu H I. Effect of growth factors on matrix ynthesis by ligament fibroblasts. Journal of Orthopaedic Research, 1997 (15), 18-23.   
[21] Sambit S, Siew L T, James C H. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells Biomaterials, 2010 (31), 2990–2998.
[22] Steinert S A, Palmer G D, Evans C H. Gene therapy in the musculosketal system.Current Opinion in Orthopaedics, 2004 (15), 318-324.
[23] Frank A, Petrigliano M D, David R. McAllister, M.D., Benjamin M. Wu. Tissue Engineering for Anterior Cruciate Ligament Reconstruction: A Review of Current Strategies; Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2006 (22) ,441–451.
[24] Chen J L,Yin Z, Shen W L. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles .Biomaterials, 2010 (31), 9438-9451.
[25] Coutinho D, Costa P, Neves N, Gomes M E, Reis R L. Micro- and nanotechnology in tissue engineering, Tissue Eng, 2011 , 3-29.
[26] Lee C H, Shin H J, Cho I H. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast, Biomaterials, 2005
1261–1270.
[27] Altman G H, Horan R, Martin I. Cell differentiation by mechanical stress. FASEB J , 2001 (6), 270-272.
[28] Reneker D H, Yarin A L, Fong H, Koombhonge S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning .J Appl Phys ,2000 (87), 4531–4547.
[29] Mina B M, Leea G, Kimb S H. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro.Biomaterials, 2004 (25) , 1289–1297
[31] Kim J H, Park C H, Lee O J. Preparation and in vivo degradation of controlled biodegradability of electrospun silk fibroin nanofiber mats. Journal of biomedical materials research, 2012 (10), 34274
[32] Charu V, Kaplan D L. Silk as a biomaterial. Progress in Polymer Science, 2007, 991–1007.
[34] Altman G H, Horan R L, Lu H. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 2002 (23), 4131–4141.
[35] Murphy A R, Kaplan D L. Biomedical applications of chemically-modified silk fibroin. Journal of materials chemistry, 2009 (19), 6443-50.
[36] Nam J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng, 2007 (13), 2249–2257.
[37] Baker B M. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 2008 (15), 2348–2358.
[38] Thorvaldsson A. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules, 2008 (3), 1044–1049.
[39] Jeong L, Lee K Y, Park W H. Effect of solvent on the characteristics of electrospun regenerated silk fibroin nanofibers, Key Eng Mater (2007), 813–816.
[40] Sell S A, McClure M J, Ayres C E, Simpson D G, Bowlin G L. Preliminary Investigation of Airgap Electrospun Silk-Fibroin Based Structures for Ligament
Analogue Engineering. Journal of Biomaterials Science, 2011(23),1253-1273.
[41] Daniel D M, Akeson W H, O’Connor J J. Biomechanics of knee ligaments: injury, healing, and repair. Journal of Biomechanics 2006 (39), 1-20.
[42] Denver C S,Stephen D W, Brian G A. Biomimetic poly (lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomaterialia 2012, (8) 3997-4006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62077-
dc.description.abstract韌帶損傷是常見的運動傷害,韌帶一旦受損就很難自行痊癒,需要手術重建,
但目前沒有一條人工韌帶可以完全取代天然韌帶。韌帶組織工程建立一個模仿韌帶生物結構的三維支架,以提供組織受損期間的機械支撐並促進組織再生。而順向性的纖維可以模仿韌帶細胞的生長環境,使細胞分泌較多的細胞外間質。
本研究利用靜電紡絲法製備蠶絲蛋白奈米纖維,透過參數調控在12 %、20 kv及1.2 ml/h下可以收集到平均直徑在500-600 nm的蠶絲奈米纖維,且在2800 rpm下可收集到最有方向性的纖維,並添加PEO增加在高轉速下的穩定性。另外我們也發展一個柱狀收集法,電紡時搭配柱狀收集板,可製備出一個三維、多孔及有方向性的鬆散支架,可改善傳統電紡製備的纖維太過緻密以致細胞不易進入支架的問題。
在SEM圖顯示具方向性的支架與韌帶細胞共培養7天後,可以看到細胞沿著纖維方向生長並分泌胞外基質;在LIVE/DEAD螢光染色顯示韌帶細胞在第七天時仍有很高的活性;利用SEM與組織切片觀察後,發現不但有細胞浸潤的情形,且細胞能在內部增殖及分泌胞外基質;另外膠原蛋白含量測定中,在7與14天膠原蛋白皆有增加的趨勢。
本研究證實我們發展的柱狀收集法製備的支架,確實可提供韌帶細胞良好的立體生長環境並且分泌胞外基質,達到修復效果,在韌帶再生上是非常有潛力的。
zh_TW
dc.description.abstractLigament injuries are a common sports injury. Once the ligament is injured, it is difficult to heal by itself and needs surgery reconstruction. In fact, there is no clinical artificial ligament to replace the native ligament currently. Ligament tissue engineering is capable of constructing a biomimetic 3¬D scaffold for ligament, providing mechanical support in the period of injury and promoting tissue regeneration. Moreover, the aligned fibers are able to mimic the proliferating environment of ligament cells, making the cells to secrete more ECM.
During the experiment, we fabricated silk fibroin nanofibers by using electrospinning and by controlling process parameters. The silk fibroin nanofibers , ranging between 500-600 nm, were collected with 12% in solution concentration、20 kV in electrical field and 1.2 ml/h flow rate directional fibers can be obtained at 2800 rpm of rotating wheel . In addition, we also added PEO to make electrospinning process more stable. Furthermore, we used a novel column collection to fabricate 3D, porous, aligned, and loose scaffolds. It changes the structure of fibers and improves the cell infiltrating into scaffolds.
In our research, SEM images show that the ligament cells grow along with the direction of fibers and secret ECM after they are cultured with aligned scaffolds for 7 day. LIVE/DEAD fluorescence images show that ligament cells still have high activity after 7 days of culturing. SEM and histological images prove not only cell infiltration, but also cell proliferation and ECM secretion. In addition, collagen content increase after 7 and 14 day of culturing.
This study demonstrates that the new scaffolds fabricated by column collection. can provides good environment for ligament cells adhesion, proliferation and further more secrete ECM. These scaffolds provide a potentiality in ligament regeneration.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:26:31Z (GMT). No. of bitstreams: 1
ntu-102-R00548036-1.pdf: 45159819 bytes, checksum: 020f749f7419af16abd3db4f9bb30ad0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要…………………………………………………………………………………….I
目錄………………………………………………………………………………...…II
圖目錄………………………………………………………………………………..III
第一章 文獻回顧 1
1.1 前言 1
1.2 韌帶組織工程 2
1.2.1 訊息因子 3
1.2.1.2 機械刺激 3
1.2.2 細胞 4
1.2.3 支架 5
1.3 靜電紡絲法 7
1.3.1靜電紡絲參數控制 8
1.3.2 電紡在組織工程上的應用 10
1.4 蠶絲蛋白 14
1.4.1 蠶絲蛋白結構與性質 14
1.4.2蠶絲蛋白支架 16
第二章 研究目的與動機 18
第三章 實驗與材料方法 20
3.1 實驗藥品 20
3.2 實驗儀器 21
3.3 蠶絲蛋白水溶液製備 22
3.4電紡步驟 22
3.5甲醇固化蠶絲蛋白支架 24
3.6 韌帶細胞初代培養 25
3.6.1 配置初代培養所需溶液及試劑 25
3.6.2 分離培養韌帶細胞 26
3.7 細胞在材料上的培養 27
3.8利用掃描室電子顯微鏡(SEM)觀察細胞型態 27
3.9 LIVE/DEAD Viadility/Cytotoxicity kit 染色觀察細胞活性 28
第四章 研究結果與討論 31
4.1以靜電紡絲製備蠶絲蛋白纖維 31
4.1.1 濃度對電紡絲的影響 31
4.1.2電壓對電紡絲的影響 33
4.1.3流速對電紡絲的影響 35
4.1.4轉速對電紡絲的影響 37
4.1.5 以柱狀收集有方向性並且多孔隙的蠶絲支架 46
4.1.6甲醇固化蠶絲蛋白………………………………………………….48
4.2顯微鏡下韌帶細胞形態 49
4.2.1 以掃描式電子顯微鏡觀察韌帶細胞貼附情形…………………....50
4.2.2 以LIVE/DEAD Viability/Cytotoxicity 染色觀察細胞貼附情形…54
4.3韌帶細胞浸潤蠶絲蛋白支架……………………………………………..56
4.3.1 以掃描式電子顯微鏡觀察細胞浸潤蠶絲蛋白支架 ……………..56
4.3.2 H&E染色觀察細胞浸潤支架………………………………………58
4.4 膠原蛋白含量分析……………………………………………………….60
第五章 結論………………………………………………………………………..61
參考文獻……………………………………………………………………………62
dc.language.isozh-TW
dc.subject電紡織法;韌帶組織工程;蠶絲蛋白;三維立體支架zh_TW
dc.subjectligament tissue engineeringen
dc.subjectsilk proteinen
dc.subject3D scaffold.en
dc.subjectelectrospinnningen
dc.title以不同電紡參數製備有方向性的蠶絲蛋白奈米纖維在韌帶組織工程上的應用zh_TW
dc.titlePreparation of Aligned Silk Fibroin Nanofiber with Different Electrospinning Parameters for Ligament Tissue Engineeringen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江鴻生,許馨云,黃亦真
dc.subject.keyword電紡織法;韌帶組織工程;蠶絲蛋白;三維立體支架,zh_TW
dc.subject.keywordelectrospinnning,ligament tissue engineering,silk protein,3D scaffold.,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2013-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
44.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved