Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorChia-Feng Chenen
dc.contributor.author陳佳楓zh_TW
dc.date.accessioned2021-06-16T13:25:43Z-
dc.date.available2015-07-30
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation1. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874 (1957)
2. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, 'Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,' Appl. Phys. Lett. 92, 133115, (2008).
3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature 424, 824 (2003).
4. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173 (1991).
5. E. Kretschmann, and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. 23A, 2135, (1968).
6. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
7. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Optics Lett. 28, 1870, (2003).
8. H.L. Offerhaus, B. van de Bergen, M. Escalante, F.B. Segerink, J.P. Korterik, and N.F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5, 2144, (2005).
9. J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
10. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996).
11. J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005).
12. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
13. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,“ Ann. Phys. 25, 377 (1908).
14. V. M. Shalaev, R. Botet, J. Mercer, E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996).
15. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985).
16. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B. 52, 11441 (1995).
17. W. L. Barnes, S. C. Kitson, T. W. preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654 (1997).
18. C. Bonnand, J. Bellessa, C. Symond, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” App. Phys. Lett. 89,231119 (2006).
19. A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Optics Lett. 5, 368 (1980).
20. A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24, 4906 (1981).
21. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449 (2002).
22. K T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
23. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
24. D. M. Schaadt, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
25. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007).
26. S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐ heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
27. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).
28. E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308, 1274 (2005).
29. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001).
30. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, New York, 1997).
31. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003).
32. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003).
33. F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L.Wei, “Energy band bowing parameter in AlxGa1–xN alloys,” J. Appl. Phys. 92, 4837 (2002).
34. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411 (2003).
35. I. Ho, and G. B. Stringfellow. “ Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701 (1996).
36. K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi. M. Terazima, and T. Mukai, “Confocal microphotoluminescence of InGaN-based light-emitting diodes,” J. Appl. Phys. 98, 064503 (2005), and references therein.
37. C. Wetzel,T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85, 866 (2004).
38. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
39. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160 (2007).
40. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,”Appl. Phys. Lett. 73, 1691 (1998).
41. A. Hangleiter, F. Hitzel, S. Lahmann, and U. Rossow, “Composition dependence of polarization fields in GaInN/GaN quantum wells,” Appl. Phys. Lett. 83, 1169 (2003).
42. I. H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, “A self‐consistent solution of Schrodinger–Poisson equations using a nonuniform mesh,” J. Appl. Phys. 68, 4071 (1990).
43. N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75, 1577 (1999).
44. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quant. Elec. 36, 1131 (2000).
45. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393 (2002).
46. I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).
47. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
48. E.M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946).
49. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface- plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 601 (2004).
50. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253 (2008).
51. Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chuo, C. M. Lee, and J. I. Chyi, 'Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,' Appl. Phys. Lett. 77, 2988 (2000).
52. S. W. Feng, E. C. Lin, T. Y. Tang, Y. C. Cheng, H. C. Wang, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, K. H. Kim, J. Y. Lin, and H. X. Jiang, 'Thermal annealing effects on an InGaN film with an average indium mole fraction of 0.31,' Appl. Phys. Lett. 83, 3906 (2003).
53. I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y. S. Kim, 'Green light-emitting diodes with self-assembled In-rich InGaN quantum dots,' Appl. Phys. Lett. 91, 133105 (2007)
54. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
55. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, Opt. Express 19, A914 (2011).
56. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, Appl. Phys. Lett. 91, 171103 (2007).
57. G. Sun, J. B. Khurgin, and R. A. Soref, Appl. Phys. Lett. 90, 111107 (2007).
58. J. B. Khurgin, G. Sun, and R. A. Soref, J. Opt. Soc. Am. B 24, 1968 (2007).
59. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, Nanotechnology 19, 345201 (2008).
60. K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, Appl. Phys. Lett. 92, 013108 (2008).
61. K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, Appl. Phys. Lett. 93, 231111 (2008).
62. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, Adv. Mater. 20, 1253 (2008).
63. G. Sun, J. B. Khurgin, and C. C. Yang, Appl. Phys. Lett. 95, 171103 (2009).
64. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, Appl. Phys. Lett. 96, 261104 (2010).
65. K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, J. Appl. Phys. 108, 113101 (2010).
66. G. Sun and J. B. Khurgin, IEEE J. Select. Topics in Quantum Electron. 17, 110 (2011).
67. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, Appl. Phys. Lett. 98, 051106 (2011).
68. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, Appl. Phys. Lett. 99, 041107 (2011).
69. C. H. Lu , C. C. Lan , Y. L. Lai , Y. L. Li , and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21, 4719-4723 (2011).
70. C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013).
71. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201 (2008).
72. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
73. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010).
74. K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93, 231111 (2008).
75. K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108, 113101 (2010).
76. H. S. Chen, C. F Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102, 041108 (2013).
77. C. Y. Cho, J. J. Kim, S. J. Lee, S. H. Hong, K. J. Lee, S. Y. Yim, and S. J. Park, “Enhanced Emission Efficiency of GaN-Based Flip-Chip Light-Emitting Diodes by Surface Plasmons in Silver Disks,” Appl. Phys. Express 5, 122103 (2012).
78. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253-1257 (2008).
79. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98, 051106 (2011).
80. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99, 041107 (2011).
81. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
82. Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with a radiating dipole near an Ag nanoparticle embedded in GaN,” Appl. Phys. Lett. 102, 161103 (2013).
83. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914-A929 (2011).
84. C. Y. Chen, C. Hsieh, C. H. Liao, W. L. Chung, H. T. Chen, W. Cao, W. M. Chang, H. S. Chen, Y. F. Yao, S. Y. Ting, Y. W. Kiang, C. C. Yang, and X.g Hu, “Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode,” Opt. Express 20, 11321-11335 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62062-
dc.description.abstract為使表面電漿子與量子井有效耦合以提升發光二極體效率,本研究中,我們於發光二極體上設計並製作三種不同之周期性金屬奈米結構,並利用此結構產生的表面電漿子和綠光發光二極體之量子井耦合,提升發光二極體之發光效率。
第一個結構是在發光二極體上製作週期性的奈米銀突起陣列,藉由深入p型氮化鎵內的銀突起陣列結構,可以縮短銀金屬結構和量子井間的距離,誘發在銀尖端附近更強的近場和量子井產生耦合。結果顯示,當注入電流為100毫安培時,具有奈米銀突起陣列之發光二極體結構和發光二極體對照組相比,發光增強74.6%。此外,此結構之模擬吸收頻譜得到的共振波長和實驗之反射頻譜所得到之結果吻合。
另外兩組表面電漿子耦合發光二極體結構是在不同厚度的p型氮化鎵之發光二極體上製作。第二組表面電漿子耦合發光二極體的結構是製作在厚的p型氮化鎵之發光二極體上。為了減少銀奈米顆粒和量子井間的距離以提升耦合強度,我們將銀的奈米顆粒放置在已蝕刻出週期性孔洞結構的p型氮化鎵內部,並將二氧化矽小球覆蓋孔洞的剩餘空間以降低漏電流。而第三組表面電漿子耦合發光二極體是將週期性排列的銀奈米顆粒放置在薄的p型氮化鎵之發光二極體上。為改善電流擴散我們於這兩組表面電漿子耦合之發光二極體、僅有孔洞結構之發光二極體,以及沒有任何結構之發光二極體表面利用分子束磊晶成長氧化鎵鋅作為透明導電層。儘管因為氧化鎵鋅的覆蓋導致表面電漿子共振波長紅移,使得量子井與表面電漿子的耦合變弱,但從內部量子效率及發光強度看,表面電漿子耦合發光二極體之效率都有明顯的提升。
zh_TW
dc.description.abstractFor generating surface plasmon coupling (LSP) with the radiating dipoles in the InGaN/GaN quantum-wells (QWs) of green light emitting diodes (LEDs) and enhancing the LED emission, we fabricate three sets of SP-coupled LEDs. First, an Ag protrusion array is fabricated on the p-GaN layer of an InGaN/GaN QW LED for generating surface plasmon coupling with the radiating dipoles in the QWs and hence LED emission enhancement. The tips of the Ag protrusions penetrating into the p-GaN layer are close to the QWs such that the induced SP near field around the tips can strongly interact with the dipoles in the QWs. With the Ag protrusions, the fabricated flip-chip LED shows a 74.6 % enhancement compared with the control LED in output intensity at 100 mA in injection current. Besides, the simulation results of Ag protrusion absorption agree reasonably well with the experimental data of protrusion reflectance. Then the other two sets of SP-LEDs are based on two epitaxial structures of different p-GaN layer thickness. In the second set based on the epitaxial structure of thick p-GaN, to reduce the distance between the Ag nanoparticles (NPs) and the QWs for increasing the coupling strength, Ag NPs are filled into a hole array fabricated on the p-GaN layer. To minimize current leakage, SiO2 NPs are used to cover the Ag NPs in the holes. In the third set based on the epitaxial structure of thin p-GaN, Ag NPs are fabricated on the surface of p-GaN. The SP-LEDs and the control LEDs with flat surface or empty holes are covered with the transparent conductor GaZnO. The SP-LEDs show the significant enhancements of LED output intensity and internal quantum efficiency even though the coverage of GaZnO red-shifts the LSP resonance peak such that the QW emission can only couple with the short-wavelength shoulder feature of LSP resonance. With the Ag NP design in this work, the current leakage is significantly reduced.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:25:43Z (GMT). No. of bitstreams: 1
ntu-102-R00941028-1.pdf: 2147992 bytes, checksum: de868e0a0ba6f42e691469f922442137 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Surface Plasmons 1
1.1.1 Surface Plasmon Polaritons 1
1.1.2 Localized Surface Plasmons 3
1.1.3 Application of Surface Plasmons 6
1.2 Nitride-based Semiconductors for Optoelectronics 8
1.2.1 Application of Nitride-based Devices 9
1.2.2 Characteristics of an InGaN/GaN Quantum Well 11
1.3 Coupling between an InGaN/GaN QW and Surface Plasmons 14
1.4 Nano imprint Lithography 17
1.5 Research Motivations 18
1.6 Organization of the Thesis 21
Chapter 2 Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN 32
2.1 Introduction 32
2.2 Epitaxial Growth and Device Process 34
2.3 Optical Characterization Results 36
2.4 Summary 41
Chapter 3 Localized Surface Plasmon Coupled Light-emitting Diodes with Buried and Surface Ag Nanoparticles 49
3.1 Introduction 49
3.2 Sample structures and fabrication procedures 53
3.3 Optical characterization results 57
3.4 Performances of light-emitting diodes 59
3.5 Summary 62
Chapter 4 Conclusions 74
References 76
dc.language.isoen
dc.subject三五族半導體zh_TW
dc.subject表面電漿子zh_TW
dc.subject奈米壓印zh_TW
dc.subject銀zh_TW
dc.subject發光二極體zh_TW
dc.subjectsurface plasmonsen
dc.subjectnano imprint lithographyen
dc.subjectlight emitting diodesen
dc.subjectIII-V semiconductorsen
dc.subjectsilveren
dc.title具金屬奈米結構之表面電漿子耦合發光二極體zh_TW
dc.titleSurface Plasmon Coupled Light-emitting Diodes with Metal Nanostructuresen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor江衍偉
dc.contributor.oralexamcommittee黃建璋,吳育任
dc.subject.keyword發光二極體,表面電漿子,奈米壓印,三五族半導體,銀,zh_TW
dc.subject.keywordlight emitting diodes,surface plasmons,nano imprint lithography,III-V semiconductors,silver,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2013-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved