Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62034
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴亮全
dc.contributor.authorHsin-Chieh Linen
dc.contributor.author林欣潔zh_TW
dc.date.accessioned2021-06-16T13:24:17Z-
dc.date.available2013-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-07-24
dc.identifier.citation1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
2. Wood, M.E., et al., The inherited nature of lung cancer: a pilot study. Lung Cancer, 2000. 30(2): p. 135-44.
3. Wu, A.H., et al., Previous Lung-Disease and Risk of Lung-Cancer among Lifetime Nonsmoking Women in the United-States. Am J Epidemiol, 1995. 141(11): p. 1023-1032.
4. Wu, A.H., et al., Personal and Family History of Lung-Disease as Risk-Factors for Adenocarcinoma of the Lung. Cancer Res, 1988. 48(24): p. 7279-7284.
5. Alavanja, M.C.R., et al., Saturated Fat Intake and Lung-Cancer Risk among Nonsmoking Women in Missouri. J Natl Cancer I, 1993. 85(23): p. 1906-1916.
6. Hainaut, P. and G.P. Pfeifer, Patterns of p53 G-->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis, 2001. 22(3): p. 367-74.
7. Pao, W., et al., EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA, 2004. 101(36): p. 13306-11.
8. Pao, W., et al., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2005. 2(3): p. e73.
9. Pao, W. and N. Girard, New driver mutations in non-small-cell lung cancer. The Lancet Oncology, 2011. 12(2): p. 175-180.
10. Toh, C.K., et al., Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol, 2006. 24(15): p. 2245-51.
11. Le Chevalier, T., et al., Efficacy of gemcitabine plus platinum chemotherapy compared with other platinum containing regimens in advanced non-small-cell lung cancer: a meta-analysis of survival outcomes. Lung Cancer, 2005. 47(1): p. 69-80.
12. Mok, T.S., et al., Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009. 361(10): p. 947-57.
13. Liaw, Y.-P., Y.-C. Huang, and G.-W. Lien, Patterns of lung cancer mortality in 23 countries: Application of the Age-Period-Cohort model. BMC Public Health, 2005. 5(1): p. 22.
14. Baylin, S.B., et al., Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet, 2001. 10(7): p. 687-692.
15. Robertson, K.D., DNA methylation and human disease. Nat Rev Genet, 2005. 6(8): p. 597-610.
16. Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002. 16(1): p. 6-21.
17. Illingworth, R.S. and A.P. Bird, CpG islands--'a rough guide'. FEBS Lett, 2009. 583(11): p. 1713-20.
18. Gray, S.G., T. Eriksson, and T.J. Ekstrom, Methylation, gene expression and the chromatin connection in cancer (review). Int J Mol Med, 1999. 4(4): p. 333-50.
19. Gama-Sosa, M.A., et al., Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta, 1983. 740(2): p. 212-9.
20. Ehrlich, M., et al., Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res, 1982. 10(8): p. 2709-21.
21. Ehrlich, M., DNA methylation in cancer: too much, but also too little. Oncogene, 2002. 21(35): p. 5400-13.
22. Nyce, J., et al., Epigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance. P Natl A Sci, 1993. 90(7): p. 2960-2964.
23. Rivard, G.E., et al., Phase I study on 5-aza-2'-deoxycytidine in children with acute leukemia. Leuk Res, 1981. 5(6): p. 453-62.
24. Karahoca, M. and R. Momparler, Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clinical Epigenetics, 2013. 5(1): p. 3.
25. Rashid, A. and J.P. Issa, CpG island methylation in gastroenterologic neoplasia: a maturing field. Gastroenterology, 2004. 127(5): p. 1578-88.
26. Li, L., et al., Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet, 2010. 19(21): p. 4273-7.
27. Noushmehr, H., et al., Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 2010. 17(5): p. 510-22.
28. Esteller, M., Epigenetics in cancer. N Engl J Med, 2008. 358(11): p. 1148-59.
29. Toyooka, S., et al., Dose effect of smoking on aberrant methylation in non-small cell lung cancers. Int J Cancer, 2004. 110(3): p. 462-4.
30. Zöchbauer-Müller, S., et al., Aberrant Promoter Methylation of Multiple Genes in Non-Small Cell Lung Cancers. Cancer Res, 2001. 61(1): p. 249-255.
31. Burbee, D.G., et al., Epigenetic Inactivation of RASSF1A in Lung and Breast Cancers and Malignant Phenotype Suppression. J Natl Cancer I, 2001. 93(9): p. 691-699.
32. Cooper, W.N., et al., Epigenetic regulation of the ras effector/tumour suppressor RASSF2 in breast and lung cancer. Oncogene, 2008. 27(12): p. 1805-11.
33. Ehrich, M., et al., Cytosine Methylation Profiles as a Molecular Marker in Non–Small Cell Lung Cancer. Cancer Res, 2006. 66(22): p. 10911-10918.
34. Tessema, M., et al., Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers. Carcinogenesis, 2009. 30(7): p. 1132-1138.
35. Toyooka, S., et al., Epigenetic Down-Regulation of Death-associated Protein Kinase in Lung Cancers. Clin Cancer Res, 2003. 9(8): p. 3034-3041.
36. Selamat, S.A., et al., Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res, 2012. 22(7): p. 1197-211.
37. Heller, G., et al., Genome-wide CpG island methylation analyses in non-small cell lung cancer patients. Carcinogenesis, 2013. 34(3): p. 513-21.
38. Lu, T.P., et al., Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers Prev, 2010. 19(10): p. 2590-7.
39. Du, P., et al., Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics, 2010. 11: p. 587.
40. Roberts, P.J., et al., Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem, 2008. 283(37): p. 25150-63.
41. Vignal, E., et al., Characterization of TCL, a New GTPase of the Rho Family related to TC10 and Cdc42. J Biol Chem, 2000. 275(46): p. 36457-36464.
42. Ho, H., et al., RhoJ modulates melanoma invasion by altering actin cytoskeletal dynamics. Pigm Cell Melanoma R 2013. 26(2): p. 218-225.
43. Kaur, S., et al., RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers. Arterioscler Thromb Vasc Biol, 2011. 31(3): p. 657-64.
44. Irizarry, R.A., et al., The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet, 2009. 41(2): p. 178-186.
45. Kulis, M., et al., Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet, 2012. 44(11): p. 1236-1242.
46. Nephew, K.P., C. Balch, and D.G. Skalnik, Methyl group acceptance assay for the determination of global DNA methylation levels. Methods Mol Biol, 2009. 507: p. 35-41.
47. Miura, F., et al., Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res, 2012. 40(17): p. e136.
48. Laird, P.W., The power and the promise of DNA methylation markers. Nat Rev Cancer, 2003. 3(4): p. 253-66.
49. Esteller, M., Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007. 8(4): p. 286-98.
50. Rauch, T., et al., Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA, 2007. 104(13): p. 5527-32.
51. Mehlen, P. and E.R. Fearon, Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol, 2004. 22(16): p. 3420-8.
52. Xing, C., et al., Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation. Biochem Bioph Res Co, 2012. 420(1): p. 29-35.
53. Colacino, J.A., et al., Comprehensive analysis of DNA methylation in head and neck squamous cell carcinoma indicates differences by survival and clinicopathologic characteristics. PLoS One, 2013. 8(1): p. e54742.
54. Tan, A.C., et al., Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol, 2009. 3(5–6): p. 425-438.
55. Ho, H., et al., RhoJ regulates melanoma chemoresistance by suppressing pathways that sense DNA damage. Cancer Res, 2012. 72(21): p. 5516-28.
56. Szyf, M., P. Pakneshan, and S.A. Rabbani, DNA methylation and breast cancer. Biochem Pharmacol, 2004. 68(6): p. 1187-1197.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62034-
dc.description.abstract肺腺癌好發於非吸菸的亞洲女性,屬於肺癌分類下的非小細胞肺癌。在西方國家與台灣中肺癌都具有很高的致死率,而早期診斷的困難和缺乏有效的治療方法都可能是造成高死亡率的原因。近年來,不正常的DNA甲基化可以調控基因表現並且被證實與癌症相關,因此常常被視為診斷的標記與藥物發展的目標。藥物處理可以改變DNA甲基化程度,進而影響基因的表現,以達到治療的目的。
然而,在台灣肺腺癌的研究中,對於受甲基化調控的基因與其功能還不清楚。因此,我們搜集台灣非吸菸女性的肺腺癌檢體以及對應的周邊正常組織,以微陣列晶片(microarray)檢測基因表現與DNA甲基化程度,並且將這兩個微陣列晶片的資料整合,分析出肺腺癌中可能受到甲基化調控的基因。分析結果得到167個基因,其中108個基因屬於高甲基化、低基因表現;另外59個基因屬於低甲基化、高基因表現。經過進一步篩選與比對IPA,得出六個目標基因進行驗證。以即時定量聚合連鎖反應(qPCR)檢驗基因表現,並以亞硫酸鹽定序(bisulfite sequencing)與Sequenom檢驗基因DNA甲基化程度。本篇研究概略呈現了肺腺癌中全基因組甲基化程度與基因表現圖譜的關係,以及篩選出一群可能受到DNA甲基化調控的基因。
zh_TW
dc.description.abstractLung adenocarcinoma, especially often observed in Asian women and never-smokers, was the most prevalent histological subtype of non-small cell lung cancer (NSCLC), which accounted for the majority of lung cancer. Lung cancer was in high mortality either in western countries or in Taiwan. The high mortality of lung cancer was contributed to the difficulty of early diagnosis and the lack of effective therapies.
Since aberrant DNA methylation was mostly involved in cancers and was reversible, the methylation-regulated genes were taken as diagnosis markers or potential targets for drug development. However, the methylation-regulated genes and their functions in lung adenocarcinoma in Taiwan were still unclear. To investigate gene expression and DNA methylation levels in lung adenocarcinoma, the tumor and adjacent normal tissues of non-smoking Taiwanese female were collected. Microarray data of expression and methylation were analyzed concurrently to find out the methylation-regulated genes. Selection criteria was set according to significant expression differences between tumor and normal tissues, and the negative correlation between expression profiles and methylation patterns. One hundred and eight genes were hypermethylated and down-regulated; 59 genes were hypomethylated and up-regulated. After additional strict criteria and Ingenuity Pathways Analysis, six candidate genes were validated both in gene expression by qPCR and DNA methylation levels by bisulfite sequencing and Sequenom either in lung adenocarcinoma specimens or lung cancer cell lines.
In summary, our study sketched the genome-wide methylation patterns and expression profiling in lung adenocarcinoma, and identified a group of candidate genes regulated by DNA methylation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:24:17Z (GMT). No. of bitstreams: 1
ntu-102-R99441006-1.pdf: 2810846 bytes, checksum: d035cbbbe3de7973f0daa3f586e574bb (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要(i)
Abstract(ii)
List of Figures(vi)
List of Tables(vii)
Chapter 1. Introduction(1)
Lung cancer(1)
DNA methylation and cancer(2)
Aim of this study(5)
Chapter 2. Materials and Methods(6)
Tumor samples(6)
Cell lines(6)
Microarray data analysis(7)
RNA extraction and reverse transcription(9)
Real-time quantitative PCR(9)
DNA extraction, bisulfite treatment, and methylation level analysis(10)
Sequenom methylation analysis(11)
Bisulfite sequencing(12)
Demethylation drug treatment(13)
Transfection(14)
Western blot analysis(14)
Double Thymidine block(15)
Cell cycle analysis(15)
3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay(16)
Transwell migration assay(16)
Chapter 3. Results(18)
Identifying the expression and methylation profiles in lung adenocarcinoma(18)
Validation of gene expression and DNA methylation of selected genes(24)
Identification of RHOJ for further study of gene expression and DNA methylation in vitro(28)
Gene expression of RHOJ was regulated by DNA methylation(30)
To determine the cellular functions of RHOJ in lung cancer(31)
Chapter 4. Discussion(34)
References(42)
dc.language.isoen
dc.subjectSequenomzh_TW
dc.subject肺腺癌zh_TW
dc.subjectDNA甲基化zh_TW
dc.subject亞硫酸鹽定序zh_TW
dc.subject微陣列晶片zh_TW
dc.subject癌症zh_TW
dc.subjectcanceren
dc.subjectSequenomen
dc.subjectbisulfite sequencingen
dc.subjectmicroarrayen
dc.subjectDNA methylationen
dc.subjectlung adenocarcinomaen
dc.title辨認在肺腺癌中受到不正常DNA甲基化調控之基因zh_TW
dc.titleIdentification of Methylation-regulated Genes in Lung Adenocarcinomaen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊曜宇,蔡孟勳,李宜靜
dc.subject.keyword癌症,肺腺癌,DNA甲基化,微陣列晶片,亞硫酸鹽定序,Sequenom,zh_TW
dc.subject.keywordcancer,lung adenocarcinoma,DNA methylation,microarray,bisulfite sequencing,Sequenom,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2013-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved