請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62032
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊志忠 | |
dc.contributor.author | Chieh Hsieh | en |
dc.contributor.author | 謝劼 | zh_TW |
dc.date.accessioned | 2021-06-16T13:24:11Z | - |
dc.date.available | 2013-07-26 | |
dc.date.copyright | 2013-07-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-24 | |
dc.identifier.citation | [1.1] L. Siozade, J. Leymarie, P. Disseix, A. Vasson, M. Mihailovic, N. Grabdjean, M. Leroux,and J. Massies, “Modeling of thermally detected optical absorption and luminescence of (In.Ga)N/GaN heterostructures,” Solid State Comun. 115, 575 (2000).
[1.2] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff “Small band gap bowing in InxGa1-xN,” Appl. Phys. Lett. 80, 4741 (2002). [1.3] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff “Universal bandgap bowing in group-III nitride allys,” Solid State Comun. 127, 411 (2003). [1.4] F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L. Wei “Energy band bowing parameter in AlxGa1-xN alloys,” J. Appl. Phys. 92, 4837 (2002). [1.5] Y.-L. Li, J. M. Shah, P.-H. Leung, Th. Gessmann, and E. F. Schubert, “Performance Charateristics of White Light Sources Consisting of Multiple Light-emitting Diodes,” Proc. Of SPIE 5187, 178 (2004) [1.6] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence Conversion of Blue Light Emitting Diodes,” Appl. Phys. A 64, 417 (1997) [1.7] S. Nakamura and G. Fasol, The Blue Laser Diode. Berlin, Germany: Springer, 216-219 (1997) [1.8] J. Y. Tsao, An OIDA Technology Roadmap Update 2002. [1.9] G. H. Gu, C. G. Park, and K. B. Nam, “Inhomogeneity of a highly efficient InGaN based blue LED studied by three-dimensional atom probe tomography,” Phys. Status Solidi RRL 3, 100 (2009). [1.10] S. Kret, P Dłuzewski, A. Szczepanska, M. Zak, R. Czernecki, M. Krysko, M. Leszczynski, and G Maciejewski, “Homogenous indium distribution in InGaN/GaN laser active structure grown by LP-MOCVD on bulk GaN crystal revealed by transmission electron microscopy and x-ray diffraction,” Nanotechnology 18, 465707 (2007). [1.11] http://lighting.sandia.gov/ [1.12] I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamada, T. Mukai, “White LEDs for solid state lighting,” Proc. of SPIE 5187, 1 (2004). [1.13] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, and E. E. Haller, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967 (2002). [1.14] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi B 230, R4 (2002). [1.15] T. Matsuoka, Hiroshi Okamoto, Masashi Nakao, and Hiroshi Harima, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246 (2002). [1.16] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff , “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003). [1.17] J. W. Ager and W. Walukiewicz, “High efficiency, radiation-hard solar cells,” LBNL Report 56326 (2004). [1.18] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN-based multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. Part 2, 35, L74 (1996). [1.19] S. Nakamura, “Characteristics of InGaN multi-quantum-well structure laser diodes,” Mater. Res. Soc. Proc. 449, 1135 (1996). [1.20] F. A. Ponce, and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386, 351 (1997). [1.21] E. Monroy, F. Call, E. Munoz, and F. Omnes, III-Nitride Semiconductors: Application and Devices, edited by E. Yu and M. Manasreh (Gordon and Breach), New York, (2000). [1.22] E. Munoz, E. Monroy, J. Pau, F. Calle, F. Omnes, and P. Gibart, “III-nitrides and UV detection,” J. Phys.:Condens. Matter 13, 7115 (2001). [1.23] T. Zimmermann, “P-channel InGaN-HFET structure based on polarization doping,” IEEE Electron Dev. Lett. 25, 450 (2004). [1.24] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M.A. Khan, and M.S. Shur, “High-temperature performance of AlGaN/GaN HFETs on SiC substrates,” IEEE Electron Dev. Lett. 18, 492 (1997). [1.25] B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron. Devices 48, 490 ( 2001 ). [1.26] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22, 157 (2001). [1.27] S.Yoshida, S. Misawa, S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” J. Vac. Sci. Technol. B 1, 250 (1983). [1.28] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638 (1997). [1.29] X. Li, S. G. Bishop, and J. J. Coleman, “GaN epitaxial lateral overgrowth and optical characterization,” Appl. Phys. Lett. 73, 1179 (1998). [1.30] B. Beaumont, V. Bousquet, P. Vennegues, M. Vaille, A. Bouille, P. Gibart, S. Dassonneville, A. Amokrane, and B. Sieber, “A two-step method for epitaxial lateral overgrowth of GaN,” phys. stat. sol. (a) 176, 567 (1999). [1.31] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” J. Cryst. Growth 221, 316 (2000). [1.32] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature deposited buffer layer between high-temperature grown GaN,” Jpn. J. Appl. Phys. 37, L316 (1998). [1.33] F. Yun, Y. Moon, Y. Fu, K. Zhu, U. Ozgur, H. Morkoc, C. K. Inoki, T. S. Kuan, A. Sagar, and R. M. Feenstra, “Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy,” J. Appl. Phys. 98, 123502 (2005). [1.34] T. Riemann, T. Hempel, J. Christen, P. Veit, R. Clos, A. Dadgar, A. Krost, U. Haboeck, and A. Hoffmann, “Optical and structural microanalysis of GaN grown on SiN submonolayers,” J. Appl. Phys. 99, 123518 (2006). [1.35] K. Y. Zang, Y. D. Wang, L. S. Wang, S. Y. Chow, and S. J. Chua, “Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111),” J. Appl. Phys. 101, 093502 (2007). [1.36] S. Nagahama, N. Iwasa, M. Senoh, T. Matsusgita, Y. Sugimoto, H. Kiyoku, T. Kozaki, M. Sano, H. Matsumura, H. Umemoto, K. Chocho, and T. Mukai, “High-power and long-lifetime InGaN multi-quantum-well laser diodes grown on low-dislocation-density GaN substrate,” Jpn. J. Appl. Phys. 39, L647 (2000). [1.37] T. Detchprohm, K. Hiramatsu, H. Amano and I. Akasaki, “Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer,” Appl. Phys. Lett. 61, 2688 (1992). [1.38] N. Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson, “Growth of GaN on ZnO for solid state lighting applications”, Proc. SPIE 6337, 63370Z (2006). [1.39] H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars, and J. A. Freitas, “Metalorganic chemical vapor deposition of GaN on Si (1 1 1): Stress control and application to field-effect transistors”, J. Appl. Phys. 89, 7846 (2001). [1.40] A. Dadgar, M. Poschenrieder, J. Blasing, O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F.A. Ponce, E. Kohn, A. Krost, “MOVPE growth of GaN on Si (1 1 1) substrates”, J. Cryst. Growth 248, 556 (2003). [1.41] A. Dadgar, P. Veit, F. Schulze, J. Blasing, A. Krtschil, H. Witte, A. Diez, T. Hempel, J. Christen, R. Clos, A. Krost, “MOVPE growth of GaN on Si-substrates and strain”, Thin Solid Films 515, 4356 (2007). [1.42] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, M. Umeno, “Thermal stability of GaN on (1 1 1) Si substrate”, J. Cryst. Growth 189/190, 178 (1998). [1.43] A. Dagar, J. Blasing, A. Diez, A. Alam, M. Heuken, and A. Krost, “Metalorganic Chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 micron in thickness”, Jpn. J. Appl. Phys. 39, L1183 (2000). [1.44] A. Dadgar, M. Poschenrieder, J. Blasing, O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F. A. Ponce, E. Kohn, A. Krost, “MOVPE growth of GaNon Si (1 1 1) substrates”, J. Cryst. Growth 248, 556 (2003). [1.45] A. Krost, and A. Dadgar, “GaN-based optoelectronics on silicon substrates”, Mater. Sci. Eng. B 93, 2 (2001). [1.46] H. Ishikawa, G.. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN on Si substrate with AlGaN/AlN intermediate layer”, Jpn. J. Appl. Phys. 38, L492 (1999). [1.47] T. Hino, S. Tomiya, T. Miyajima, K. Yamashima, S. Hashimoto and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76, 3421 (2000). [1.48] H. K. Cho, J. Y. Lee, G. M. Yang and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79, 215 (2001). [1.49] J. A. Chisholm and P. D. Bristowe, “Stacking fault energies in Si doped GaN: A first principles study,” Appl. Phys. Lett. 77, 534 (2000). [1.50] H. C. Yang, T. Y. Lin, and Y. F. Chen, “Nature of the 2.8-eV photoluminescence band in Si-doped GaN,” Phys. Rev. B 62, 12593 (2000). [1.51] Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, and E. Fred Schuber, Joachim Piprek, Yongjo Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007) [1.52] T. Doan, C. Chu, C. Chen, W. Liu, J. Chu, J. Yeh, H. Chen, F. Fan, C. Tran, “Vertical GaN based Light Emitting Diodes on Metal Alloy Substrate for Solid State Lighting Application,” Proc. of SPIE Vol. 6134 61340G-6 [1.53] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90, 4191 (2001). [1.54] http://www.coherent.com/Downloads/HB_LED.pdf [1.55] W. H. Chen, X. N. Kang, X. D. Hu, R. Lee, Y. J. Wang, “Study of the structural damage in the (0001) GaN epilayer processed by laser lift-off techniques,” Appl. Phys. Lett. 91, 121114 (2007). [1.56] E. A. Stach, M. Kelsch, E. C. Nelson, W. S. Wong, T. Sands, “Structural and chemical characterization of free-standing GaN films separated from sapphire substrates by laser lift-off,” Appl. Phys. Lett. 77, 1819 (2000). [1.57] Ji-Hao Cheng, YewChung Sermon Wu, Wei Chih Peng, and Hao Ouyang, “Effects of Laser Sources on Damage Mechanisms and Reverse-Bias Leakages of Laser Lift-Off GaN-Based LEDs,” Journal of The Electrochemical Society, 156, H640-H643 (2009). [1.58] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69, 1119 (1996). [1.59] S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, P. W. Wisk, and A. Katz, “Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy,” J. Vac. Sci. Technol. A 11, 1772 (1993). [1.60] A. T. Ping, I. Adesida, and M. A. Khan, Appl. Phys. Lett. “Study of chemically assisted ion beam etching of GaN using HCl gas,” 67, 1250 (1995). [1.61] F. Ren, J. R. Lothian, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. D. MacKenzie, R. G. Wilson, and R. F. Karlicek, “Effect of dry etching on surface properties of III-nitrides,” J. Electron. Mater. 26, 1287 (1997). [1.62] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86, 1 (1999). [1.63] D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654 (1998). [1.64] E. S. Hellman, “The polarity of GaN: a critical review,” MRS Internet J. Nitride Semicond. 3, 11 (1998). [1.65] M. S. Minsky, M. White, and E. L. Hu, “Room‐temperature photoenhanced wet etching of GaN,” Appl. Phys. Lett. 68, 1531 (1996). [1.66] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride,” Appl. Phys. Lett. 72, 939 (1998). [1.67] C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN,” Appl. Phys. Lett. 71, 2151 (1997). [1.68] C. Youtsey, I. Adesida, L. T. Romano, and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching,” Appl. Phys. Lett. 72, 560 (1998). [1.69] C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett. 73, 797(1998). [1.70] A. R. Stonas, P. Kozodoy, H. Marchand, P. Fini, S. P. DenBaars, U. K. Mishra, and E. L. Hu, “Backside-illuminated photoelectrochemical etching for the fabrication of deeply undercut GaN structures,” Appl. Phys. Lett. 77, 2610 (2000). [1.71] A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu, “Development of selective lateral photoelectrochemical etching of InGaN/GaN for lift-off applications,” Appl. Phys. Lett. 78, 1945 (2001). [1.72] H. M. Ng, W. Parz, N. G. Weimann and A. Chowdhury, “Patterning GaN microstructures by polarity-selective chemical etching,” Jpn. J. Appl. Phys. 42, L1405 (2003). [1.73] Y. Gao, M. D. Craven, J. S. Speck, S. P. Denbarrs, and E. L. Hu, “Dislocationand crystallographic-dependent photoelectochemical wet etching of gallium nitride,” Appl. Phys. Lett. 84, 3322 (2004). [1.74] R. Khare, E. L. Hu, D. Reynolds, and S. J. Allen, “Photoelectrochemical etching of high aspect ratio submillimeter waveguide filters from n+ GaAs wafers,” Appl. Phys. Lett. 61, 2890 (1992). [1.75] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett., vol. 87, no. 5, p. 051107, Jul. 2005. [1.76] K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys., Condens. Matter, vol. 13, no. 32, pp.6961–6975, Aug. 2001. [1.77] P. A. Kohl, “Photoelectrochemical etching of semiconductors,” IBM J. Res. Develop. 42, 629 (1998). [1.78] A. R. Stonas, N. C. MacDonald, K. L. Tuner, S. P. DenBaars, and E. L. Hu, “Photoelectrochemical undercut etching for fabrication of GaN microelectromechanical systems,” J. Vac. Sci. Technol. B 19, 2838 (2001). [1.79] L. Backlin, “Photoelectrochemical laser interference etching for fabrication of 235 nm diffraction gratings on n-InP,” Electron. Lett. 23, 657 (1987). [1.80] E. J. Twyford, C. A. Carter, P. A. Kohl, and N. M. Jokerst, “The influence of aluminum concentration on photoelectrochemical etching of first order gratings in GaAs/AlGaAs,” Appl. Phys. Lett. 67, 1182 (1995). [2.1] X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., vol. 85, no. 18, pp. 3971–3973, Nov. 2004. [2.2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855–857, 2004. [2.3] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett., vol. 72, no. 5, pp. 599–601, 1998. [2.4] W. H. Chen, et al., “Study of the structural damage in the (0001) GaN epilayer processed by laser lift-off techniques,” Appl. Phys. Lett., vol. 91, no. 12, pp. 121114-1–121114-3, 2007. [2.5] D. J. Rogers, et al., “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN,” Appl. Phys. Lett., vol. 91, no. 7, pp. 071120-1–071120-3, 2007. [2.6] K. Fujii, et al., “Leakage current improvement of nitride-based light emitting diodes using CrN buffer layer and its vertical type application by chemical lift-off process,” Appl. Phys. Lett., vol. 94, no. 24, pp. 242108-1–242108-3, Jun. 2009. [2.7] K. Y. Zang, et al., “A new method for lift-off of III-nitride semiconductors for heterogeneous integration,” Nanoscale Res. Lett., vol. 5, no. 6, pp. 1051–1056, Apr. 2010. [2.8] C. F. Lin, J. J. Dai, G. M. Wang, and M. S. Lin, “Chemical lift-off process for blue light-emitting diodes,” Appl. Phys. Express, vol. 3, no. 9, pp. 092101-1–092101-3, Aug. 2010. [2.9] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, “Doping selective lateral electrochemical etching of GaN for chemical lift-off,” Appl. Phys. Lett., vol. 94, no. 22, pp. 221907-1–221907-3, Jun. 2009. [2.10] C. H. Lin, C. Y. Chen, C. H. Liao, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Sapphire substrate liftoff with photoelectrochemical etching for vertical light-emitting diode fabrication,” IEEE Photon. Technol. Lett., vol. 23, no. 10, pp. 654–656, May 15, 2011. [2.11] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett., vol. 87, no. 5, pp. 051107-1–051107-3, Jul. 2005. [2.12] K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys. Condens. Matter, vol. 13, no. 32, pp. 6961– 6975, 2001. [3.1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178-1181 (1991). [3.2] D.C. Adler, y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photonics 1, 709-716 (2007). [3.3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003). [3.4] William A. Melton and Jacques I. Pankove, “GaN growth on sapphire,” Journal of Crystal Growth, 178, 168-173 (1997) [3.5] K. Hiramatsu1, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth,” phys. Stat. sol. (a), 176, 535 (1999) [3.6] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth 144, 133 (1994). [3.7] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638 (1997). [3.8] D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Anisotropic epitaxial lateral growth in GaN selective area epitaxy,” Appl. Phys. Lett., 71, 1204 (1997). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62032 | - |
dc.description.abstract | 在本論文中,我們展示了利用光輔助電化學蝕刻法來實現一個低成本,大面積且有效率剝離藍寶石基板的方法。首先,我們製作一維條紋狀溝槽結構的圖案化藍寶石基板,然後,在長晶的過程中,這些溝槽可以保留並且形成通道。光輔助電化學電解質溶液則可以順著通道流入並且蝕刻氮化鎵層的底部,進而將氮化鎵和藍寶石基板分離。配合元件隔離步驟,利用光輔助電化學來剝離四分之一晶圓大小的圖案化藍寶石基板只需要八分鐘。剝離後,將樣品研磨至n-型氮化鎵層,即可製作垂直式發光二極體,在本研究中,我們也比較了垂直式發光二極體和傳統側向式發光二極體的各項特性。
此外,我們藉由調整長晶參數,來消除原本在成長時所產生的縫隙並且進一步改善晶體品質。同時我們利用非破壞性的光學同調斷層掃描技術來檢測在氮化鎵層下方是否確實產生通道。接下來,我們利用氙氣燈做為光輔助電化學蝕刻的光源,配合元件隔離步驟,成功將一整片兩吋的藍寶石基板剝離。為了更進一步提升剝離基板的效率,我們成功地製作了二維結構的圖案化藍寶石基板,並且在其上成長氮化鎵層時保留底下的通道。我們利用一個紫外光發光二極體陣列作為光源,在沒使用元件隔離步驟之條件下,也成功剝離了一整片兩吋大小的二維圖案化藍寶石基板。 | zh_TW |
dc.description.abstract | In this dissertation, a low-cost large-area effective sapphire substrate liftoff method based on the photoelectrochemical (PEC) etching technique is demonstrated. By preparing patterned sapphire substrate (PSS) with 1-D periodic grooves and an epitaxial structure with the grooves preserved to form tunnels, PEC electrolyte can flow along the tunnels to etch the bottom of the GaN layer for separating the PSS from the wafer-bonded epitaxial layer. Assisted by the device isolation procedure, the PSS liftoff of a quarter-wafer sample can be completed in 8 min. After a smoothing process of the exposed N-face surface after liftoff, a vertical light-emitting diode (LED) is fabricated for comparing its characteristics with those of a conventional LED.
In addition, we further optimize the growth condition to eliminate the formation of the slits during the growth and also improve the crystal quality. Then, the technique of optical coherence tomography is introduced for noninvasive testing of the PSS grooves beneath of nitride epitaxial layer. Next, the PEC liftoff of a 2-inch full-wafer sample with the device isolation procedure is demonstrated based on the illumination of a xenon lamp. To increase the PEC liftoff speed, the fabrication of 2-D PSS and its successful nitride overgrowth are demonstrated. Finally, the full-wafer PEC liftoff of 2-D PSS without the device isolation procedure is implemented based on the illumination of a UV LED array. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:24:11Z (GMT). No. of bitstreams: 1 ntu-102-F96941099-1.pdf: 6500176 bytes, checksum: 543376f0d31b90e883d45ac914d7c899 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要...…………………………………………………………....ii
Abstract………………………………………………………………ivContents……………………………………………………………...vi Chapter 1 Introduction 1.1 Overviews of Nitride Semiconductors 1.1.1 Physical Properties and Applications of Nitride Semiconductors…………………………………………2 1.1.2 Substrates for Nitride Semiconductors…………...5 1.1.3 Defects in GaN………………………………...…7 1.2 Substrate Liftoff and Fabrication of Vertical Light Emitting Diodes 1.2.1 An Overview of Vertical LED……………...…….9 1.2.2 Methods for Sapphire Substrate Liftoff……….…11 1.2.3 Brief Introduction to PEC Etching………………12 1.2.4 Mechanisms of PEC Etching……………………14 1.2.5 PEC Liftoff of Sapphire Substrate……………....17 1.3 Research Motivations and Dissertation Organization..21 References………………………………………………………....25 Chapter 2 Photoelectrochemical Liftoff of Patterned Sapphire Substrate for Fabricating Vertical Light-Emitting Diode 2.1 Introduction……………………………………………………47 2.2 Fabrication of Patterned Sapphire Substrate……….……49 2.3 Sapphire Substrate Liftoff with PEC Etching………….50 2.4 Characteristics of Vertical Light-Emitting Diode……...53 2.5 Summary……………………………………………….54 References…………………………………………………………..56 Chapter 3 Photoeletrochemical Liftoff of Full-wafer Patterned Sapphire Substrate 3.1 Introduction……………………………………………….…63 3.2 Optimization of Overgrowth Condition on PSS………65 3.3 Optical Coherence Tomography for Noninvasive Testing..........................................................................67 3.4 PEC Liftoff of a Full Wafer with Device Isolation…..69 3.5 Overgrowth on Two-dimensional PSS and Its PEC Liftoff……………………………………………..…70 3.6 Summary ……………………………………………74 References……………………………………………………..…77 Chapter 4 Conclusions and Future Work Conclusions…………………………………………….…93 Publication List...................................................................96 | |
dc.language.iso | en | |
dc.title | 以光輔助電化學技術剝離藍寶石基板供垂直型發光二極體製作 | zh_TW |
dc.title | Photoelectrochemical Liftoff of Sapphire Substrate for Vertical Light-emitting Diode Fabrication | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 鄭克勇,謝光前,杜立偉,張守進,黃建璋 | |
dc.subject.keyword | 光輔助電化學,藍寶石基板,發光二極體, | zh_TW |
dc.subject.keyword | photoelectrochemical,light emitting diode, | en |
dc.relation.page | 101 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-24 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 6.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。