Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62029
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.authorHsiang-Yao Sunen
dc.contributor.author孫祥耀zh_TW
dc.date.accessioned2021-06-16T13:24:01Z-
dc.date.available2023-12-31
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-24
dc.identifier.citation[1] R. Smalley, Energy & Nanotechnology Conference Rice University 2003.
[2] I. Intergovernmental Panel on Climate Change, 2001.
[3] German advisory council on global change 2003.
[4] D. M. Chapin, C. S. Fuller and G. L. Pearson, Journal of Applied Physics 1954, 25, 676-677.
[5] A. G. Martin, E. Keith and Yoshihi, Solar cell efficiency tables (Ver.38) 2011, 19, 565-572.
[6] D. Kearns and M. Calvin, Journal of Chemical Physics 1958, 29, 950.
[7] C. W. Tang, Applied Physics Letters 1986, 48, 183.
[8] N. S. Sariciftci, L. Smilowitz, A. J. Heegel and F. Wudl, Science 1992, 258, 1474.
[9] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 1995, 270, 1789.
[10] H. Spanggaard and F. C. Krebs, Solar Energy Materials and Solar Cells 2004, 83, 125-146.
[11] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Progress in Photovoltaics 2008, 16, 235-239.
[12] J. G. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Applied Physics Letters 2004, 85, 5757-5759.
[13] B. Oregan and M. Gratzel, Nature 1991, 353, 737-740.
[14] M. Gratzel, Nature 2001, 414, 338-344.
[15] A. Hagfeldt and M. Gratzel, Chemical Reviews 1995, 95, 49-68.
[16] A. Hagfeldt and M. Gratzel, Accounts of Chemical Research 2000, 33, 269-277.
[17] H. Sakamoto, S. Igarashi, K. Niume and M. Nagai, Organic Electronics 2011, 12, 1247-1252.
[18] D. Hwang, S. M. Jo, D. Y. Kim, V. Armel, D. R. MacFarlane and S.-Y. Jang, Acs Applied Materials & Interfaces 2011, 3, 1521-1527.
[19] J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Advanced Materials 2005, 17, 66+.
[20] M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee and S. T. Lee, Applied Physics Letters 2007, 91.
[21] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. Macdiarmid, Physical Review Letters 1977, 39, 1098-1101.
[22] H. Zhou, L. Yang and W. You, Macromolecules 2012, 45, 607-632.
[23] S. Kirchmeyer and K. Reuter, Journal of Materials Chemistry 2005, 15, 2077-2088.
[24] R. F. Service, Science 2011, 332, 293-293.
[25] J. Chen and Y. Cao, Accounts of Chemical Research 2009, 42, 1709-1718.
[26] Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chemical Reviews 2009, 109, 5868-5923.
[27] A. Facchetti, Chemistry of Materials 2010, 23, 733-758.
[28] 張正華, 李陵嵐, 葉楚平 和 楊平華, 北京:化學工業出版社 2006.
[29] T. Kietzke, Advances in OptoElectronics 2007, 2007.
[30] B. C. Thompson and J. M. J. Frechet, Angewandte Chemie International Edition 2008, 47, 58-77.
[31] S. Guenes, H. Neugebauer and N. S. Sariciftci, Chemical Reviews 2007, 107, 1324-1338.
[32] E. Bundgaard and F. C. Krebs, Solar Energy Materials and Solar Cells 2007, 91, 954-985.
[33] B. C. Thompson and J. M. J. Frechet, Angewandte Chemie-International Edition 2008, 47, 58-77.
[34] D. A. Skoog , D. M. West and F. J. Holler, Saunder College Pub.
1988.
[35] J. R. Lakowicz, Kluwer Academic 1999.
[36] M. Pope and C. E. Swenberg, Oxford University Press: Oxford 1999.
[37] J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey and J. L. Bredas, Journal of the American Chemical Society 1998, 120, 1289-1299.
[38] 葉名倉 和 蕭全佑, 國科會高瞻自然科學教學資料平台 2010.
[39] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 1992, 258, 1474-1476.
[40] 黃桂武, 工業技術研究院材化所 2010.
[41] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha and M. Ree, Nature Materials 2006, 5, 197-203.
[42] R. Mauer, M. Kastler and F. Laquai, Advanced Functional Materials 2010, 20, 2085-2092.
[43] Y. Kim, J. Nelson, J. R. Durrant, D. D. C. Bradley, K. Heo, J. Park, H. Kim, I. McCulloch, M. Heeney, M. Ree and C.-S. Ha, Soft Matter 2007, 3, 117-121.
[44] G. Dennler, M. C. Scharber and C. J. Brabec, Advanced Materials 2009, 21, 1323-1338.
[45] N. Drolet, J. F. Morin, N. Leclerc, S. Wakim, Y. Tao and M. Leclerc, Advanced Functional Materials 2005, 15, 1671-1682.
[46] E. E. Havinga, W. Tenhoeve and H. Wynberg, Synthetic Metals 1993, 55, 299-306.
[47] Q. T. Zhang and J. M. Tour, Journal of the American Chemical Society 1998, 120, 5355-5362.
[48] J.-L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, Accounts of Chemical Research 2009, 42, 1691-1699.
[49] H. Zhou, L. Yang, S. Stoneking and W. You, Acs Applied Materials & Interfaces 2010, 2, 1377-1383.
[50] H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You, Angewandte Chemie-International Edition 2011, 50, 2995-2998.
[51] C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So and J. R. Reynolds, Journal of the American Chemical Society 2011, 133, 10062-10065.
[52] T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding and Y. Tao, Journal of the American Chemical Society 2011, 133, 4250-4253.
[53] M.-S. Su, C.-Y. Kuo, M.-C. Yuan, U. S. Jeng, C.-J. Su and K.-H. Wei, Advanced Materials 2011, 23, 3315+.
[54] X. Shengqiang, C. P. Samuel, Z. Huaxing and Y. Wei in Recent Progress on Highly Efficient Bulk Heterojunction Polymer Solar Cells, Vol. 1034 American Chemical Society, 2010, pp. 71-80.
[55] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nature Photonics 2009, 3, 649-653.
[56] Y. Huang, L. Huo, S. Zhang, X. Guo, C. C. Han, Y. Li and J. Hou, Chemical Communications 2011, 47, 8904-8906.
[57] F. He, W. Wang, W. Chen, T. Xu, S. B. Darling, J. Strzalka, Y. Liu and L. Yu, Journal of the American Chemical Society 2011, 133, 3284-3287.
[58] Y. Li and Y. Zou, Advanced Materials 2008, 20, 2952-2958.
[59] F. Huang, K.-S. Chen, H.-L. Yip, S. K. Hau, O. Acton, Y. Zhang, J. Luo and A. K. Y. Jen, Journal of the American Chemical Society 2009, 131, 13886-+.
[60] C. Duan, K.-S. Chen, F. Huang, H.-L. Yip, S. Liu, J. Zhang, A. K. Y. Jen and Y. Cao, Chemistry of Materials 2010, 22, 6444-6452.
[61] A. Cravino and N. S. Sariciftci, Journal of Materials Chemistry 2002, 12, 1931-1943.
[62] F. Giacalone and N. Martin, Chemical Reviews 2006, 106, 5136-5190.
[63] A. Cravino and N. S. Sariciftci, Nature Materials 2003, 2, 360-361.
[64] J. Roncali, Advanced Energy Materials 2011, 1, 147-160.
[65] 方榮生, 項立成 and 李亭寒, 北京:中國農業機械出版社 1985.
[66] C. J. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, Springer 2003.
[67] W. L. Ma, C. Y. Yang, X. Gong, K. Lee and A. J. Heeger, Advanced Functional Materials 2005, 15, 1617-1622.
[68] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, Advanced Materials 2006, 18, 789+.
[69] M. D. Perez, C. Borek, S. R. Forrest and M. E. Thompson, Journal of the American Chemical Society 2009, 131, 9281-9286.
[70] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas and J. V. Manca, Nature Materials 2009, 8, 904-909.
[71] L. Yang, H. Zhou and W. You, Journal of Physical Chemistry C 2010, 114, 16793-16800.
[72] 胡中為, 南京大學出版社 2003.
[73] in Newport Oriel Instruments, Vol. Http://www.newport.com/oriel
[74] in American Society for Testing and Materials, Vol. Http://www.astm.org. .
[75] J. Lee, S. Cho and C. Yang, Journal of Materials Chemistry 2011, 21, 8528-8531.
[76] C. He, Q. He, Y. Yi, G. Wu, F. Bai, Z. Shuai and Y. Li, Journal of Materials Chemistry 2008, 18, 4085-4090.
[77] J. Zhang, Y. Yang, C. He, Y. He, G. Zhao and Y. Li, Macromolecules 2009, 42, 7619-7622.
[78] H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li and X. Zhan, Advanced Materials 2011, 23, 1554-1557.
[79] J. Zhang, Y. Yang, C. He, D. Deng, Z. Li and Y. Li, Journal of Physics D-Applied Physics 2011, 44.
[80] D. Sahu, C.-H. Tsai, H.-Y. Wei, K.-C. Ho, F.-C. Chang and C.-W. Chu, Journal of Materials Chemistry 2012, 22, 7945-7953.
[81] D. Deng, S. Shen, J. Zhang, C. He, Z. Zhang and Y. Li, Organic Electronics 2012, 13, 2546-2552.
[82] A. Tang, L. Li, Z. Lu, J. Huang, H. Jia, C. Zhan, Z. a. Tan, Y. Li and J. Yao, Journal of Materials Chemistry A 2013, 1, 5747-5757.
[83] S. Shen, L. Gao, C. He, Z. Zhang, Q. Sun and Y. Li, Organic Electronics 2013, 14, 875-881.
[84] T. Yasuda, Y. Shinohara, T. Ishi-i and L. Han, Organic Electronics 2012, 13, 1802-1808.
[85] G. L. Tu, S. Massip, P. M. Oberhumer, X. M. He, R. H. Friend, N. C. Greenham and W. T. S. Huck, Journal of Materials Chemistry 2010, 20, 9231-9238.
[86] M. Wang, C. Li, A. Lv, Z. Wang, Z. Bo and F. Zhang, Polymer 2012, 53, 324-332.
[87] J. Roncali, P. Leriche and A. Cravino, Advanced Materials 2007, 19, 2045-2060.
[88] S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blancharddesce, J. W. Perry and J. Skindhoj, Science 1994, 263, 511-514.
[89] S. Liu, M. A. Haller, H. Ma, L. R. Dalton, S. H. Jang and A. K. Y. Jen, Advanced Materials 2003, 15, 603-607.
[90] F. Huang, K.-S. Chen, H.-L. Yip, S. K. Hau, O. Acton, Y. Zhang, J. Luo and A. K. Y. Jen, Journal of the American Chemical Society 2009, 131, 13886-13887.
[91] C. H. Duan, K. S. Chen, F. Huang, H. L. Yip, S. J. Liu, J. Zhang, A. K. Y. Jen and Y. Cao, Chemistry of Materials 2010, 22, 6444-6452.
[92] Z.-G. Zhang, Y.-L. Liu, Y. Yang, K. Hou, B. Peng, G. Zhao, M. Zhang, X. Guo, E.-T. Kang and Y. Li, Macromolecules 2010, 43, 9376-9383.
[93] Z.-G. Zhang, Y. Yang, S. Zhang, J. Min, J. Zhang, M. Zhang, X. Guo and Y. Li, Synthetic Metals 2011, 161, 1383-1389.
[94] H. Xie, K. Zhang, C. Duan, S. Liu, F. Huang and Y. Cao, Polymer 2012, 53, 5675-5683.
[95] Z. M. Hao and A. Iqbal, Chemical Society Reviews 1997, 26, 203-213.
[96] L. Huo, J. Hou, H.-Y. Chen, S. Zhang, Y. Jiang, T. L. Chen and Y. Yang, Macromolecules 2009, 42, 6564-6571.
[97] R. B. Aich, Y. Zou, M. Leclerc and Y. Tao, Organic Electronics 2010, 11, 1053-1058.
[98] J. C. Bijleveld, R. A. M. Verstrijden, M. M. Wienk and R. A. J. Janssen, Journal of Materials Chemistry 2011, 21, 9224-9231.
[99] Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray and L. Yu, Journal of the American Chemical Society 2009, 131, 7792-7799.
[100] N. Allard, R. B. Aich, D. Gendron, P.-L. T. Boudreault, C. Tessier, S. Alem, S.-C. Tse, Y. Tao and M. Leclerc, Macromolecules 2010, 43, 2328-2333.
[101] E. Zhou, Q. Wei, S. Yamakawa, Y. Zhang, K. Tajima, C. Yang and K. Hashimoto, Macromolecules 2010, 43, 821-826.
[102] J. Li, K.-H. Ong, S.-L. Lim, G.-M. Ng, H.-S. Tan and Z.-K. Chen, Chemical Communications 2011, 47, 9480-9482.
[103] P. P. Khlyabich, B. Burkhart, C. F. Ng and B. C. Thompson, Macromolecules 2011, 44, 5079-5084.
[104] B. Burkhart, P. P. Khlyabich and B. C. Thompson, ACS Macro Letters 2012, 1, 660-666.
[105] J. C. Bijleveld, V. S. Gevaerts, D. Di Nuzzo, M. Turbiez, S. G. J. Mathijssen, D. M. de Leeuw, M. M. Wienk and R. A. J. Janssen, Advanced Materials 2010, 22, E242+.
[106] P. Sonar, S. P. Singh, Y. Li, Z.-E. Ooi, T.-j. Ha, I. Wong, M. S. Soh and A. Dodabalapur, Energy & Environmental Science 2011, 4, 2288-2296.
[107] Z. Wu, B. Fan, A. Li, F. Xue and J. Ouyang, Organic Electronics 2011, 12, 993-1002.
[108] X. C. Wang, H. Luo, Y. P. Sun, M. J. Zhang, X. Y. Li, G. Yu, Y. Q. Liu, Y. F. Li and H. Q. Wang, Journal of Polymer Science Part a-Polymer Chemistry 2012, 50, 371-377.
[109] E. Sperotto, G. P. M. van Klink, G. van Koten and J. G. de Vries, Dalton Transactions 2010, 39, 10338-10351.
[110] A. Suzuki, Journal of Organometallic Chemistry 1999, 576, 147-168.
[111] A. L. Casado and P. Espinet, Organometallics 1998, 17, 954-959.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62029-
dc.description.abstract本研究乃合成共軛主鏈結構為施體-受體(Donor-Acceptor)之低能隙共軛高分子並利用Suzuki coupling和Stille coupling合成法成功的合成一系列交替型共聚高分子(Alternating copolymer)及無規則共聚高分子(Random copolymer)。
此研究中採用的施體為具有良好電洞傳輸能力的三苯胺(Triphenylamine)基團且本身的螺旋結構,可導致材料不易產生結晶,非結晶的特色使得材料電荷傳遞各個方向都具有均一性,另外這種扭曲開來的結構也會使得材料本身的溶解度提升。除此之外,我們也在三苯胺的側鏈上分別接枝上無機三苯基矽和有機咔唑並探討其物理性質和光電特性上有何差異;受體方面選用具有較剛硬的結構、高共平面性、高熱穩定性及高電子親和力的吡咯并吡咯二酮(Diketopyrrolopyrrole,DPP)結構,藉由吡咯並吡咯二酮高共平面特性可稍稍補足三苯胺共平面性的不足以補償在非晶相向中電子傳遞的損失,另一方面其強拉電子的特性以增加電子傳遞效率。
然而就單單只有施體-受體(Donor-Acceptor)交替所形成的共聚高分子,通常其紫外光-可見光之吸收光譜都不會呈現寬廣的吸收範圍,因此我們預期透過無規則共聚合(Random copolymerization)的方式引入不同含量的3-已烷基噻吩(3-hexylthiophene) 改善交替型共聚高分子的可見光吸收範圍,以盡可能地達到全光譜吸收。如此一來,便能提升高分子材料的短路電流值。此外我們對成功合成出的一系列交替型共聚高分子(PTPA-DPP、PTPASiPh3-DPP、PTPACz-DPP)以及無規則共聚高分子(TPASiHTDPP系列和TPACzHTDPP系列)利用凝膠滲透層析儀、熱重分析儀、微差掃描卡計、紫外光/可見光分光光譜儀、以及循環伏安儀來做光電性質分析與探討,進而應用於有機太陽能電池元件的製作與討論。
zh_TW
dc.description.abstractIn order to obtain conjugated polymers of low energy band gap we formed the conjugated main chain structure of the donor-acceptor alternately. Donor and acceptor successfully synthesized by a series of alternating copolymers and random copolymers via Suzuki coupling reaction and Stille coupling reaction.
In this research, We used triphenylamine as donor because of its great hole transporting property and helical structure. Triphenylamine can increase open circuit voltage(Voc) for organic polymer solar cell. In addition, we mounted triphenyl silicon and carbazole on side chain of triphenylamine and investigated the physical properties and photovoltaic performance of all kinds of polymer.
Diketopyrrolopyrrole (DPP) was chosen as a acceptor because of its characteristic: a strong electron withdrawing monomer and light harvesting covering a wide spectrum of UV-Vis absorption. Especially,the properties of DPP unit were coplanarity and a closer π-π stacking distance that would enhance the charge mobilities.
The alternating donor-acceptor strategy was the frequently observed shifting of the polymer absorption profile to the long wavelength region as opposed to a true broadening across both the visible and near-infrared regions. Therefore, we expected that different contents of 3-hexylthiophene could improve the visible absorption range of alternating copolymers and to achieved full spectral absorption.
In addition,we successfully synthesized a series of alternating copolymers and random copolymers which used gel permeation chromatography, thermal gravimetric analysis, differential scanning calorimetry, UV / Vis spectrophotometer, and cyclic voltammetry to analysis their properties of optical band gaps、HOMO and LUMO. As a result all kinds of copolymer applied to the production of organic polymer solar cell and investigated characteristic of organic polymer solar cell .
The highest power conversion efficiency were 3.16 %, containing weigh ratio with random copolymer(TPASi15HT75DPP10) : PC71BM = 1:2 , Voc of 0.64 V, Isc of 8.29 mA/cm2, and FF of 0.59 under AM 1.5G solar simulator
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:24:01Z (GMT). No. of bitstreams: 1
ntu-102-R00524030-1.pdf: 6033426 bytes, checksum: d80d0261eecec4a55fcf8d24cdb65adc (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝.....................................................I
摘要....................................................II
ABSTRACT..............................................III
目錄....................................................IV
圖目錄..................................................VII
表目錄...................................................XI
Chapter 1緒論...........................................1
1.1前言.................................................1
1.2研究動機..............................................3
Chapter 2文獻回顧........................................4
2.1 有機太陽能歷史回顧.....................................4
2.2 太陽能電池的種類.......................................6
2.3 有機太陽能電池之結構分類...............................10
2.4有機太陽能電池基本知識..................................13
2.4.1 能量轉移機制......................................13
2.4.2 運作機制.........................................14
2.5 共軛高分子於有機太陽能電池之應用........................16
2.5.1 共軛型高分子.....................................16
2.5.2 共軛高分子結構對於有機太陽能電池之影響................17
2.5.3 共軛高分子之主鏈結構種類...........................18
2.6 電池元件特性參數....................................22
2.6.1 等效電路........................................22
2.6.2 開路電壓(Open-circuit photovoltage, Voc)........25
2.6.3 短路電流(Short-circuit photocurrent, Isc).......26
2.6.4 充填因子(Fill factor, FF).......................27
2.6.5 光電轉換效率(Power conversion efficiency, η).....27
2.6.6 外部量子效率(External Quantum Efficiency, EQE)...27
2.7 標準太陽光譜........................................29
2.8 全共軛系統之有機太陽能電池.............................31
2.8.1 三苯胺(Triphenylamine)系列 ......................31
2.8.2 吡咯并吡咯二酮(Diketopyrrolopyrrole)系列..........38
Chapter 3 實驗部分......................................43
3.1 實驗藥品與溶劑.......................................43
3.2 實驗儀器............................................48
3.2 合成步驟及數據.......................................51
3.2.1 化合物之合成流程圖..................................51
3.2.2 各化合物之合成步驟..................................56
Chapter 4 結果與討論.....................................71
4.1 合成機制與結果探討....................................71
4.1.1 Ullmann Condensation............................71
4.1.2 Suzuki−Miyaura Coupling Polymerization..........73
4.1.3 Stille Coupling Polymerization..................75
4.1.4 高分子的分子量探討..................................77
4.2 熱化學性質...........................................79
4.2.1 交替型共聚高分子之熱性質分析.........................79
4.2.2 無規則型共聚高分子之熱性質分析........................82
4.3 光物理性質............................................86
4.3.1 交替型共聚高分子之UV-Vis吸收光譜分析...................86
4.3.2 無規則型共聚高分子之UV-Vis吸收光譜分析.................90
4.4 電化學性質............................................96
4.5 元件物理性質..........................................112
4.5.1 有機高分子太陽能元件製程............................112
4.5.2 交替型共聚物之元件性質..............................113
4.5.3 無規則型共聚物之元件性質............................119
Chapter 5 結論...........................................122
Chapter 6參考文獻.........................................123
dc.language.isozh-TW
dc.title三苯胺及其衍生物與吡咯并吡咯二酮之交替型與無規則型共聚高分子合成、特性及其於有機太陽能電池應用上之研究zh_TW
dc.titleSynthesis and Properties of Alternating and Random Copolymers Using Triphenylamine and Its Derivative with Diketopyrrolopyrrole for Organic Solar Cellsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁文傑(Man-kit Leung),莊清男(Ching-Nan Chuang)
dc.subject.keyword低能隙,三苯胺,側鏈基團,?咯並?咯二酮,3-已烷基?吩,全光譜吸收,本體異質接面有機太陽能電池,zh_TW
dc.subject.keywordlow band gap,triphenylamine,side group,diketopyrrolopyrrole,broadening of the spectral absorption,3-hexylthiophene,bulk heterojunction solar cell,en
dc.relation.page165
dc.rights.note有償授權
dc.date.accepted2013-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved