請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62028完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為(Chee-Wee Liu) | |
| dc.contributor.author | Jheng-Sin Liu | en |
| dc.contributor.author | 劉政鑫 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:23:58Z | - |
| dc.date.available | 2018-07-26 | |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-24 | |
| dc.identifier.citation | [1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Progress in Photovoltaics: Research and Applications, Volume 21, Issue 1, pages 1–11, January 2013
[2] International Technology Roadmap for Photovoltaics (ITRPV) Results 2011 [3] D. A. Clugston, P. A. Basore. “PC1D version 5: 32-bit solar cell modeling on personal computers.” Conference Record of the 26th IEEE Photovoltaic Specialists Conference, pages 207-210, 1997. [4] Sentaurus Device User Guide, Version G-2012.06. Synopsys. Inc., 2012. [5] http://www.synopsys.com/Tools/TCAD/Pages/StructureEditor.aspx [6] http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/default.aspx [7] http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/SentaurusDevice.aspx [8] Daniel Kray, Martin Hermle and Stefan W. Glunz,” Theory and Experiments on the Back Side Reflectance of Silicon Wafer Solar Cells”, Prog. Photovolt: Res. Appl. 2008; 16:1–15 [9] A. G. Aberle, G. Heiser, and M. A. Green,” Two-dimensional numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells” J. Appl. Phys. 75_(1994) 5391-5405. [10] P.K. Singh, R. Kumar, M. Lal, S.N. Singh, B.K. Das, “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions”, Solar Energy Materials & Solar Cells 70 (2001) 103-113 [11] http://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon [12] J. Foley, A. van Dam, S. Feiner, and J. Hughes, ”Computer graphics: Principles and practices”, Addison Wesley, 1990 [13] Optical absorption factor of solar cells for PVT systems, by R. Santbergen, PhD. Thesis, 2008,TU Eindhoven [14] C.A. Lu, et al., “NOVEL TEXTURE WITH WEIGHTED REFLECTANCE LESS THAN 5%”, The 4th International Workshop on Science and Technology of Crystalline Si Solar Cells (CSSC4), Taipei, Taiwan, Oct. 27-29, 2010. [15] J.L. Balenzategui , F. Chenlo, “Measurement and analysis of angular response of bare and encapsulated silicon solar cells”,Solar Energy Materials & Solar Cells 86 (2005) 53–83 [16] Hitoshi SAI , Homare FUJII, Koji ARAFUNE, Yoshio OHSHITA, Yoshiaki KANAMORI1, Hiroo YUGAMI1, and Masafumi YAMAGUCHI,” Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells”, Japanese Journal of Applied Physics Vol. 46, No. 6A, 2007, pp. 3333–3336 [17] “Investigations on Novel Surface Structures for High Efficiency Crystalline Silicon Solar Cells” ,PhD. Thesis, Chen, Chun-Heng,2011,NTHU [18] Mauro Zanuccoli, Raffaele De Rose, Paolo Magnone, Enrico Sangiorgi, Fellow, and Claudio Fiegna,” Performance Analysis of Rear Point Contact Solar Cells by Three-Dimensional Numerical Simulation” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 5, MAY 2012 [19] Victor Moroz, Joanne Huang, Kapila Wijekoon, and David Tanner,” EXPERIMENTAL AND THEORETICAL ANALYSIS OF THE OPTICAL BEHAVIOR OF TEXTURED SILICON WAFERS” Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE [20] National Physical Laboratory(UK) ,Kaye & Laby , Table of Physical & Chemical Cotents [21] P. Ortega, A. Orpella, I. Martin, M. Colina, G. Lopez, C. Voz, M. I. Sanchez, C. Molpeceres, and R. Alcubilla, “Laser-fired contact optimization in c-Si solar cells,” Progr. Photovolt., Res. Appl., doi: 10.1002/pip.1115. [22] P. Ortega, G. Lopez, A. Orpella, I. Martin, M. Colina, C. Voz, S. Bermejo, J. Puigdollers, M. Garcia, and R. Alcubilla, “Crystalline silicon solar cells beyond 20% efficiency,” in Proc. CDE, Palma de Mallorca, Spain, 2011, pp. 1–4. ISBN: 978-1-4244-7863-7. [23] Mauro Zanuccoli, Raffaele De Rose, Paolo Magnone, Enrico Sangiorgi, Fellow, and Claudio Fiegna,” Performance Analysis of Rear Point Contact Solar Cells by Three-Dimensional Numerical Simulation” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 5, MAY 2012 [24] M. Ho‥rteis, and S.W. Glunz” Fine Line Printed Silicon Solar Cells Exceeding 20% Efficiency” Prog. Photovolt: Res. Appl. 2008; 16:555–560 [25] S. R. Wenham, M. A. Green, M. E. Watt, “Applied Photovoltaics”,UNSW [26] H.B. Serreze, Conf. Record 13th. IEEE Photovoltaic Specialists Conf, 1978 [27] R.J. Handy,” Theoretical analysis of the series resistance of a solar cell” Solid-State Electronics Volume 10, Issue 8, August 1967, Pages 765–775 [28] A. Antonin*, M. Stefancich, D. Vincenzi, C. Malag' u, F. Bizzi, A. Ronzoni, G. Martinelli” Contact grid optimization methodology for front contact concentration solar cells” Solar Energy Materials & Solar Cells 80 (2003) 155–166 [29] http://pveducation.org/pvcdrom/design/series-resistance [30] “Three-dimensional All-Back-Contact Monocrystalline Silicon Solar-Cell Simulation” Sentaurus example | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62028 | - |
| dc.description.abstract | 在本篇論文中,著重在研究n型矽基板太陽能電池的光電特性之模擬。為了有效降低研究成本與最佳化各式太陽能電池,透過模擬得知結果是有效的方法。模擬可應用在不同材料、結構、表面鈍化、光學抗反射層、表面紋理結構。從最早期數值計算,一維模擬(ex. PC1D),二維模擬已經發展成熟,但是有些特性因為其二維特性而無法被討論。三維模擬可以提供更廣泛的結構測試與光電特性研究。在光性方面,模擬紋理均一性與隨機位置,並反映在反射率上。在電性方面,三維模擬不同之寄生串聯電阻與金屬柵線。
在第二章中,用實際太陽能電池的光電特性,驗證二維維模擬的準確性並提出各項模擬所需之參數。同時,不同入光角度造成的電性與光性影響也被提出來討論在三、四章中,從三維光學模擬可得知製作出擁有紋理結構擁有隨機位置與均一大小可得到最好的反射率。而從電性模擬中,最佳化不同材料、厚度、接觸電阻、寬度、金屬主柵線與副柵線與其連接圖形,模擬三種不同形狀副柵線(三角形、多段式、一般長方形)的填充因子。 | zh_TW |
| dc.description.abstract | Modeling of photovoltaic devices has become more and more important and helpful not only to predict the performance of new devices but also to provide ideas and guidelines to industry without manufacture. The goal of this thesis is to provide an analysis of solar cells to the numerical simulation using state-of-the-art TCAD simulator featuring the capability to handle 2-D and 3-D geometries.
The electrical and optical simulation of wafer based n-type Silicon solar cell is done by two-dimensional simulation. Firstly, the optical properties are analyzed by raytracing method. To calibrate the reflectance, some new optical models are introduced. Secondly, we simulate the electrical properties of solar cells. Other than Jsc, Voc, fill factor (FF) and efficiency, we also look into external quantum efficiency (EQE) and reflectance of the simulated cell with reference to fabricated cell. Finally, the angular effects on optical and electrical simulations are reported. We look into the optical and electrical issue by 3D simulations. In optical part, non-uniformity and random position issue of solar cells are discussed. The random position fills the skyline of textures. This enhances the light trapping ability of the solar cell and decreases the reflectance. However, non-uniformity of textures makes space between textures. It let light escape from texture surface leading higher reflectance. The electrical properties are discussed. The series resistance from metal grid is simulated. The simulation optimizes the thickness of metal grid and resistivity of different material. The width of busbar for planar solar cells is simulated. The different materials of metal grids, contact resistance, and height of metal grids are investigated to optimize the structure of the grid on the top of cells. The 3D simulation is used to optimize the size and shape of the finger on the top of the cells. The tradeoff between short circuit Jsc to favor small grid area and the FF to favor large grid area leads to an optimum value of finger width about ~20 μm, with silver (14.7nΩ-m), contact resistance (1mΩ-cm2), and height of metal grids (30-40 μm). To reduce the I2R drop of the finger, triangle and multi-segments are considered. Given the same metal area, the short circuit current and the open circuit voltage of the different finger design are similar. The resistive loss of triangle and multi-segment fingers are smaller than rectangular (conventional) fingers. The FFs of multi-segment, and triangular fingers are larger than the those of rectangular fingers for the same shadow area. The multi-segment fingers have comparable FF with triangular fingers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:23:58Z (GMT). No. of bitstreams: 1 ntu-102-R00941003-1.pdf: 3250088 bytes, checksum: 6d4d01b6846c2ab0160c82746e1cb0ba (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Related Publications(相關論文發表) ii 誌謝 iii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 1.3 Simulation Tool 3 Chapter 2 Two Dimensional Optical and Electrical Simulation on Wafer-based Silicon Solar Cells 5 2.1 Introduction 5 2.2 Optical Simulation Method 6 2.2.1 Transfer Matrix Method (TMM) 6 2.2.2 Raytracing Method 7 2.3 2D Optical Simulation and Experimental Result Comparison 8 2.3.1 Simulation Setup 8 2.3.2 Simulation and Experiment of Reflection 9 2.4 Calibration of Backside Reflectance (Phong Model ) 11 2.4.1 Specular Reflection model 12 2.4.2 Phong Model 13 2.5 Different Texture Structure 15 2.6 Angular Effect on Optical Properties of Solar Cells 19 2.6.1 Cosine Law 19 2.6.2 Angular Factor 20 2.6.3 Angular Effect on Reflectance 21 2.7 Electrical Simulation 23 2.7.1 Simulation Setup 23 2.7.2 I-V Simulation 25 2.7.3 EQE Simulation 27 2.7.4 Angular effect on Jsc and EQE 28 Chapter 3 Three Dimensional Optical and Electrical Simulation on Wafer-based Silicon Solar Cells 31 3.1 Introduction 31 3.2 3D Optical Simulation 32 3.2.1 Simulation Setup 32 3.2.2 Regular textures 32 3.2.3 Random Textures 35 3.3 Non-uniformity and Random Positions of Textures 36 3.3.1 Random Positions of Textures 37 3.3.2 Non-uniformity of Textures 39 3.4 3D Electrical Simulation 42 3.4.1 Simulation Setup 42 3.4.2 Metal Resistivity 45 3.4.3 The Contact Resistivity 47 3.4.4 Thickness of Metal Grid 49 3.5 The Simulation of Busbar 50 Chapter 4 Three-dimensional Simulations of Metal Grids on Si Solar Cells 53 4.1 Introduction 53 4.2 Calculations of Front Contact 54 4.2.1 Series Resistance 54 4.2.2 Power Loss Analysis (Regular) 55 4.2.3 Power Loss Analysis (Triangular, Multi-segment) 59 4.3 Simulation of Front Contact 62 4.3.1 Simulation Setup 62 4.3.2 Texture and Resistance 63 4.3.3 Finger width 64 4.4 Different Types of Finger Structures 67 4.4.1 Triangular Finger 67 4.4.2 Comparison of Three Types Finger 68 Chapter 5 Summary and Future Work 71 5.1 Summary 71 5.2 Future Work 72 REFERENCE 73 | |
| dc.language.iso | en | |
| dc.subject | 金屬柵線 | zh_TW |
| dc.subject | 反射率 | zh_TW |
| dc.subject | 表面紋理 | zh_TW |
| dc.subject | 角度 | zh_TW |
| dc.subject | 太陽電池 | zh_TW |
| dc.subject | 二維模擬 | zh_TW |
| dc.subject | 三維模擬 | zh_TW |
| dc.subject | 副柵線 | zh_TW |
| dc.subject | angular effect | en |
| dc.subject | 3D simulation | en |
| dc.subject | fill factor | en |
| dc.subject | series resistance | en |
| dc.subject | texture | en |
| dc.subject | metal grid | en |
| dc.subject | solar cell | en |
| dc.title | N型矽晶圓太陽能電池三維模擬 | zh_TW |
| dc.title | Three-dimensional Simulation on N-type Wafer-based Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林吉聰(Jyi-Tsong Lin),曾永華(Yonhua Tzeng),汪大暉(Tahui Wang),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 三維模擬,二維模擬,太陽電池,角度,表面紋理,反射率,金屬柵線,副柵線, | zh_TW |
| dc.subject.keyword | 3D simulation,solar cell,metal grid,texture,series resistance,fill factor,angular effect, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
