Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭(Anthony J. T. Lee)
dc.contributor.authorChern-Jia Leeen
dc.contributor.author李辰葭zh_TW
dc.date.accessioned2021-06-16T13:23:34Z-
dc.date.available2018-08-23
dc.date.copyright2013-08-23
dc.date.issued2013
dc.date.submitted2013-07-24
dc.identifier.citation[1] S. Adali, R. Escriva, M. K. Goldberg, M. Hayvanovych, M. Magdon-Ismail, B. K. Szymanski, W. A. Wallace, G. Williams. Measuring Behavioral Trust in Social Networks. 2010 IEEE International Conference on Intelligence and Security Informatics, pp. 150-152, 2010.
[2] S. Bharathi, D. Kempe, M. Salek. Competitive influence maximization in social networks. Proceedings of 3rd International Conference on Internet and network economics, pp. 306-322, 2007.
[3] A. Borodin, Y. Filmus, J. Oren. Threshold models for competitive influence in social networks. Internet and Network Economics Lecture Notes in Computer Science, Vol. 6484, pp. 539-550, 2010.
[4] C. Budak, D. Agrawal, A. E. Abbadi. Diffusion of information in social networks: Is it all local? Proceedings of the 2012 IEEE 12th International Conference on Data Mining, pp. 121 - 130, 2012.
[5] T. Carnes, C. Nagarajan, S. M. Wild, A. van Zuylen. Maximizing influence in a competitive social network: A follower’s perspective. Proceedings of the 9th International Conference on Electronic Commerce, pp. 351-360, 2007.
[6] M. Cha, H. Haddadi, F. Benevenuto, K. P. Gummadi. Measuring user influence in Twitter: The million follower fallacy. Proceedings of the Fourth International Association for the Advancement of Artificial Intelligence Conference on Weblogs and Social Media, pp. 10-17, 2010.
[7] W. Chen, W. Lu, N. Zhang. Time-critical influence maximization in social networks with time-delayed diffusion process. Proceedings of the Fourth International Association for the Advancement of Artificial Intelligence Conference on Weblogs and Social Media, pp. 592-598, 2012.
[8] W. Chen, C. Wang, Y. Wang. Efficient influence maximization in social network. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199-208, 2009.
[9] W. Chen, C. Wang, Y. Wang. Scalable influence maximization for prevalent viral marketing in large-scale social networks. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1029-1038, 2010.
[10] B. Chou, E. Suzuki. Discovering community-oriented roles of nodes in a social network. Proceedings of International Conference on Data Warehousing and Knowledge Discovery, pp. 52-64, 2010.
[11] J. Dean and S. Chemawat, Mapreduce: Simplified data processing on large clusters, Proceedings of the 6th Symposium on Operating System Design and Implemention, pp. 137-149, 2004.
[12] P. Domingos, M. Richardson. Mining the nerwork value of customers. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57-66, 2001.
[13] P. Domingos, M. Richardson. Mining knowledge-sharing sites for viral marketing. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 61-70, 2002.
[14] A. Galstyan, V. Musoyan, P. Cohen. Maximizing influence propagation in networks with community structure. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, Vol. 79, Issue 5, pp. 1-7, 2009.
[15] S. Ghosh, B. Viswanath, F. Kooti, N. K. Sharma, G. Korlam, F. Benevenuto, N. Ganguly, K. P. Gummadi. Understanding and combating link farming in the Twitter social network. Proceeding of the 21st International Conference on World Wide Web, pp. 61-70, 2012.
[16] A. Goyal, W. Lu, L. V. S. Lakshmanan. SIMPATH: An efficient algorithm for influence maximization under the linear threshold model. Proceedings of the 2011 IEEE 11th International Conference on Data Mining, pp. 211-220, 2011.
[17] A. Java, X. Song, T. Finin, B. Tseng. Why we Twitter: Understanding microblogging usage and communities. Proceedings of the 9th webKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56-65, 2007.
[18] T. Kajdanowicz, W. Indyk, P. Kazienko. MapReduce approach to relational influence propagation in complex networks. Journal of Pattern Analysis and Applications, pp. 1-8, 2012.
[19] E. Katz, P. Lazarsfeld, Personal Influence: The Part Played by People in the Flow of Mass Communications, Free Press (New York), 1955.
[20] D. Kempe, J. Kleinberg, E. Tardos. Maximizing the spread of influence through a social network. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137-146, 2003.
[21] M. Kimura, K. Saito. Tractable models for information diffusion in social networks. Proceeding of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 259-271, 2006.
[22] G. Kossinets, J. M. Kleinberg, D. J. Watts. The structure of information pathways in a social communication network. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and DataMining, pp. 435-443, 2008.
[23] H. Kwak, C. Lee, H. Park, S. Moon, What is Twitter, a social network or a new media? Proceedings of the 19th International Conference on World Wide Web, pp. 591-600, 2010.
[24] C. Li, J. Bernoff, Groundswell: Wining in a world transformed by social technologies, Harvard Business Press, pp. 1-24, 2008.
[25] B. Liu, G. Cong, D. Xu, Y. Zeng. Time constrained influence maximization in social networks. Proceedings of IEEE 12th International Conference on Data Mining, pp. 439-448, 2012.
[26] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, A. Ukkonen. Sparsification of influence networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and DataMining, pp. 529-537, 2011.
[27] E. Roger. Diffusion of Innovations (5th edition), Free Press (New York), 2003.
[28] F. Reichheld, W. Sasser. Zero defects: Quality comes to services. Harvard Business Review, pp. 105-111, 1990.
[29] B. Ryan, N. Gross. The diffusion of hybrid seed corn in two Iowa communities. Rural Sociology, Vol. 8, No. 1, pp. 15-24, 1943.
[30] U. Shardanand, P. Maes. Social information filtering: Algorithms for automating “word of mouth”. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210-217, 1995.
[31] S. Shirazipourazad, B. Bogard, H. Vahhani, A. Sen. Influence propagation in adversarial setting: How to defeat competition with least amount of investment. Proceedings of 21st ACM Conference on Information and Knowledge Management, pp. 585-594, 2012.
[32] K. Storbacka, T.Strandvik, C.Gronroos. Managing customer relationships for profits. International Journal of Service Industry Management, Vol. 5, No. 5, pp. 21-28, 1994.
[33] S. H. Strogatz. Exploring complex networks. Nature, International weekly journal of science, No. 410, pp. 268-276, 2001.
[34] J. Tang, J. Sun, C. Wang, Z. Yang. Social Influence Analysis in Large-scale Networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and DataMining, pp. 807-816, 2009.
[37] Y. Wang, G. Cong, G. Song, K. Xie. Community-based greedy algorithms for mining top-k influential nodes in mobile social. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1039-1048, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62020-
dc.description.abstract前人所提出的方法著重於使用單一關係來模擬訊息傳遞範圍,並且忽略社群網路上關係建立之目的以及使用者分享之意願。因此,在本篇論文中,我們提出一個考慮分享關係以及追蹤關係的方法來模擬不同時間點之資訊傳播的範圍與演變,同時,為了分析社群網路龐大的資料量,我們提出一個以MapReduce為基礎的資訊傳播分析模型。我們的方法首先以不同時間點的分享關係找出訊息傳遞的方式,接著利用追蹤關係來找出訊息真正傳遞的範圍,並觀察不同社群之資訊傳遞範圍。接著我們分析不同社群的傳遞範圍以探討社群間關係之演進,以及每個使用者在訊息傳播過程中所扮演角色之演進。實驗結果顯示不同型態的社群與使用者有不同的特徵,事件會影響訊息傳播的範圍,同時也會影響不同社群之關係以及參與傳播的使用者之角色分布。我們可根據傳遞的範圍及方式了解目標使用者的傳遞行為以及扮演的角色,分析不同時期社群的消長,協助我們在使用社群網路當作行銷工具時,能夠及時因應市場傳播趨勢來制訂最佳的競爭策略。zh_TW
dc.description.abstractThe previously proposed methods which only use either following or sharing relationship; however, it is not enough to realize the information propagation by just considering either one relationship. Therefore, in this thesis, we propose a method to analyze the evolution and relationships of communities, and identify users’ roles and role evolution. Moreover, we adopt the MapReduce platform to implement the proposed method since it can be easily scaled to any number of processing units. Our proposed method uses sharing relationships in different periods to compute sharing weights and construct the propagation model. Then it utilizes following relationships to find the influence range, analyze the evolution and relationships of communities, and identify users’ roles and role evolution. Thus, it can dynamically find the evolution of communities and users’ roles since the sharing relationship may change over time according to the tweet topics. The experimental results show that the communities and users have various characteristics for different types of social networks. Also, users’ roles and role distribution, and the relationships and evolution of communities are affected by important events. The proposed method may help firms formulate prompt and effective marketing and competitive strategies.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:23:34Z (GMT). No. of bitstreams: 1
ntu-102-R00725025-1.pdf: 2000311 bytes, checksum: a9a1fd7cc30760d571c32cda10b25dad (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Literature Survey 7
Chapter 3 Problem Definitions and Preliminary Concepts 11
Chapter 4 The Proposed Method 14
4.1 Sharing Threshold Model 14
4.2 Relationships and Evolution of Communities 17
4.3 User Roles and Role Evolution 18
Chapter 5 Experiments and Analysis 20
5.1 Data Collection 20
5.2 Finding Activated communities on Twitter 21
5.3 Finding Influenced Communities on Twitter 25
5.4 Overlap between Communities 28
5.5 Influence Map 32
Chapter 6 Conclusions and Future Work 38
References 41
dc.language.isoen
dc.title社群網路中社群關係之演變zh_TW
dc.titleDiscovering Relationships between Communities on Social Networksen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥良(Y. L. Chen),劉敦仁(Duen-Ren Liu)
dc.subject.keyword社群網路,資訊傳播,雲端運算,zh_TW
dc.subject.keywordsocial network,information propagation,MapReduce,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2013-07-24
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved