請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝 | |
| dc.contributor.author | Cheng-Hsun Lin | en |
| dc.contributor.author | 林政勛 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:23:29Z | - |
| dc.date.available | 2015-08-08 | |
| dc.date.copyright | 2013-08-08 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-24 | |
| dc.identifier.citation | Atalla, R. H. and Vanderhart, D. L. (1984). Native cellulose: a composite of Two distinct crystalline forms. Science 223(4633): 283-285.
Bae S., Shoda M. (2004) Bacterial Cellulose Production by Fed-Batch Fermentation in Molasses Medium. Biotechnology Progress 20:1366-1371. Bae S., Sugano Y., Shoda M. (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering 97:33-38. Ben-Hayyim G., Ohad I. (1965) Synthesis of cellulose by Acetobacter Xylinum. The Journal of Cell Biology 25:191-207. DOI: 10.1083/jcb.25.2.191. Benziman, M. and Burger-Rachamimov, H. (1962). Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum. Journal of Bacteriology 84(4): 625-630. Borzani W., Souza S.J. (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotechnology Letters 17:1271-1272. Brown Jr R.M., Saxena I.M. (2000) Cellulose biosynthesis: A model for understanding the assembly of biopolymers. Plant Physiology and Biochemistry 38:57-67. Brown J.R.M. (1989) Cellulose: Structural and Functional Aspects. Brown R. (2004) Cellulose Structure and biosynthesis: What is in store for the 21th century? J Poly Sci: Part A: olymer Chem 42:487 - 495. Brown, R. M., Willison, J. H. and Richardson, C. L. (1976). 'Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proceedings of the National Academy of Sciences of the United States of America 73(12): 4565-4569. Budhiono A., Rosidi B., Taher H., Iguchi M. (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers 40:137-143. Castro C., Zuluaga R., Alvarez C., Puteux J.L., Caro G., Rojas O.J., Mondragon I., Ganan P. (2012) Bacterialcellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydrate Polymers 89(4):1033-1037 Chao Y., Ishida T., Sugano Y., Shoda M. (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnology and Bioengineering 68:345-352. Chao Y.p., Sugano Y., Kouda T., Yoshinaga F., Shoda M. (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnology Techniques 11:829-832. Chen P., Cho S.Y., Jing H.J. (2010) Modification and applications of bacterial celluloses in polymerscience. Macromolecular Research 18:309-320 DOI 10.1007/s13233-010-0404-5 Czaja W., Romanovicz D., Brown R.m. (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403-411. Czaja W., Krystynowicz A., Bielecki S., Brown J.R.M. (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145-151. Embuscado M.E., Marks J.S., BeMiller J.N. (1994) Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloids 8:407-418. Evans B.R., O'Neill H.M., Malyvanh V.P., Lee I., Woodward J. (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics 18:917-923. Fontana J., De Souza A., Fontana C., Torriani I., Moreschi J., Gallotti B., De Souza S., Narcisco G., Bichara J., Farah L. (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology 24-25:253-264. Gao W.H., Chen K.F., Yang R.D., Yang F., Han W.J. (2011) Properties of bacterial cellulose and its influence on the physical properties of paper. BioResources 6(1):144-153 Gisela, H., Henrik, B., Aase, B., Nannmark, U., Gatenholm, P. and Risberg, B. (2006). In vivo biocompatibility of bacterial cellulose. Journal of Biomedical Materials Research Part A 76A(2): 431-438. Han N.S., Robyt J.F. (1998) The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain longation and the role of lipid pyrophosphate intermediates in the cell membrane. Carbohydrate Research 313:125-133. Hestrin S., Schramm M. (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58:345-352. Hornung M., Ludwig M., Schmauder H. (2007) Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng Life Sci 7:35 - 41. Hornung M., Ludwig M., Gerrard A.M., Schmauder H.-P. (2006a) Optimizing the Production of Bacterial Cellulose in Surface Culture: Evaluation of Substrate Mass Transfer Influences on the Bioreaction (Part 1). Engineering in Life Sciences 6:537-545. Hornung M., Ludwig M., Gerrard A.M., Schmauder H.-P. (2006b) Optimizing the Production of Bacterial Cellulose in Surface Culture: Evaluation of Product Movement Influences on the Bioreaction (Part 2). Engineering in Life Sciences 6:546-551. Hsieh Y.C., Yano H., Nogi M., Eichhorn S. (2008) An stimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507-513. Hwang J.W., Yang Y.K., Hwang J.K., Pyun Y.R., Kim Y.S. (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter Xylinum BRC5 in Agitaed Culture. Journal of bioscience and bioengineering 88(2):183-188 Ifuku S., Nogi M., Abe K., Handa K., Nakatsubo F., Yano H. (2007) Bacterial cellulose—the ultimate nano scalar ellulose morphology for the production of high strength composites. Biomacro molecules 8:1973-1978 Iguchi M., Yamanaka S., Budhiono A. (2000) Bacterial cellulose—a masterpiece of nature's arts. Journal of Materials Science 35:261-270. Jonas R., Farah L.F. (1998) Production and application of microbial cellulose. Polymer Degradation and Stability 59:101-106. Jung R., Kim H.S., Kim Y., Kwon S.M., Lee H.S., Jin H.J. (2008) Electrically conductive transparent papers using multiwalled carbon nanotubes. Journal of Polymer Science Part B: Polymer Physics 46(12):1235-1242 Klemm D., Schumann D., Udhardt U., Marsch S. (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Progress in Polymer Science 26:1561-1603. Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., oncalves-Miśkiewicz M., Turkiewicz M., Bielecki S. (2002) Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and iotechnology 29:189-195. Masaoka S., Ohe T., Sakota N. (1993) Production of cellulose from glucose by Acetobacter xylinum. Journal of Fermentation and Bioengineering 75:18-22. Matsuoka M., Tsuchida T., Matsushida K., Adachi Osao., Yoshonaga F. (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. ucrofermentans. Bioscience, biotechnology, and biochemistry 60(4):575-579 Miller G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31:426-428. DOI: 10.1021/ac60147a030. Nakagaito A.N., Iwamoto S., Yano H. (2005) Bacterial cellulose- the ultimate nano scalar cellulose morphology for the production of high strength composites. Applied Physics A 80:93-97 DOI:10.1007/s00339-004-2932-3 Naritomi T., Kouda T., Yano H., Yoshinaga F. (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. Journal of Fermentation and ioengineering 85:598-603. Naritomi T., Kouda T., Yano H., Yoshinaga F., Shigematsu T., Morimura S., Kida K. (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochemistry 38:41-47. Nishi Y., Uryu M., Yamanaka S., Watanabe K., Kitamura N., Iguchi M., Mitsuhashi S. (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science 25:2997-3001. Oikawa T., Morino T., Ameyama M. (1995) Production of cellulose fromD-Arabitol by Acetobacter xylinum KU-1. ioscience, biotechnology, and biochemistry 59(8):1564-1565. Okiyama A., Motoki M., Yamanaka S. (1993) Bacterial ellulose IV. Application to processed foods. Food Hydrocolloids 6:503-511. Okiyama A., Shirae H., Kano H., Yamanaka S. (1992) Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids 6:471-477. Pandey L.K., Saxena C., Dubey V. (2005) Studies on ervaporative characteristics of bacterial cellulose embrane. Separation and Purification Technology 42:213-218. Park C., Lee S. (1998) Ammonia production from yeast extract and its effect on growth of the hyperthermophilic archaeon Sulfolobus solfataricus.Biotechnology and Bioprocess ngineering 3:115-118. Putra A., Kakugo A., Furukawa H., Gong J.P., Osada Y. (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885-1891 Ross P., Mayer R., Benziman M. (1991) Cellulose biosynthesis and function in bacteria. Microbiol. Mol. Biol. Rev. 55:35-58. Sakairi N., Asano H., Ogawa M., Nishi N., Tokura S. (1997) A method for direct harvest of bacterial cellulose filaments during continuous cultivation of Acetobacter xylinum. arbohydrate Polymers 35:233-237. Shoda M., Sugano Y. (2005) Recent advances in bacterial cellulose production. Biotechnology and Bioprocess ngineering 10:1-8. Son H.J., Heo M.S., Kim Y.G., Lee S.J. (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnology and Applied Biochemistry 33(1):1-5 Steinbuchel, A. and Rhee, S. K. (2005). Polysaccharides and polyamides in the food industry. Korea, Wiley-vch. Sugiyama J., Persson J., Chanzy H. (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461-2466. DOI: 0.1021/ma00009a050. Sutherland, I. W. (1998). Novel and established applications of microbialpolysaccharides. Trends in Biotechnology 16(1): 41-46. Svensson A., Nicklasson E., Harrah T., Panilaitis B., Kaplan D.L., Brittberg M., Gatenholm P. (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419-431. Toda K., Park Y.S., Asakura T., Cheng C.Y., Ohtake H. (1989) High-rate acetic acid production in a shallow flow ioreactor. Applied Microbiology and Biotechnology 30:559-563. Toda K., Asakura T., Fukaya M., Entani E., Kawamura Y. (1997) Cellulose production by acetic acid-resistant cetobacter xylinum. Journal of Fermentation and Bioengineering 84:228-231. Valla, S., Coucheron, D. H., Fjarvik, E., Kjosbakken, J., Weinhouse, M., Ross, P., mikam, D. and Benziman, M. (1989). Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-egative mutants by the UDPG pyrophosphorylase structural gene. Molecular and General Genetics 217(1): 26. Vandamme E.J., De Baets S., Vanbaelen A., Joris K., De Wulf P. (1998) Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability 59:93-99. VanderHart D.L., Atalla R.H. (1984) Studies of icrostructure in native celluloses using solid-state carbon-13 NMR. cromolecules 17:1465-1472. DOI: 10.1021/ma00138a009. Watanabe K., Tabuchi M., Morinaga Y., Yoshinaga F. (1998) Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. Cellulose 5:187-200. Weinhouse, H. and Benziman, M. (1974). Regulation of hexose phosphate metabolism in Acetobacter xylinum. Biochem. J. 138(3): 537-542. Weinhouse, H. and Benziman, M. (1976). Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role. J. Bacteriol. 127(2): 747-754. Williams W.S., Cannon R.E. (1989) Alternative Environmental Roles for Cellulose Produced by Acetobacter xylinum. Appl. Environ. Microbiol. 55:2448-2452. Yamada, Y. (1996). Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 57. International Journal of Systematic Bacteriology 46(2): 625-626. Yamada, Y. (2000). Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as luconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. International Journal of Systematic and Evolutionary Microbiology 50(6): 2225-2227. Yamanaka S., Watanabe K., Kitamura N., Iguchi M., Mitsuhashi S., Nishi Y., Uryu M. (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science 24:3141-3145. Yang Y.K., Park S.H., Hwang J.W., Pyun Y.R., Kim Y.S. (1998) Cellulose production by Acetobacter xylinum BRC5 under gitated condition. Journal of Fermentation and ioengineering 85:312-317. Yao W., Wu X., Zhu J., Sun B., Zhang Y. Y., Miller C. (2011) Bacterial cellulose membrane – A new support carrier for yeast immobilization for ethanol fermentation. Process biochemistry 46:2054-2058. Yoon S.H., Jin H.J., Kook M.C., Pyun Y.R. (2006) lectrically Conductive Bacterial Cellulose by Incorporation of Carbon Nanotubes. Biomacromolecules 7 (4): 1280–1284 Yoshinaga F., Tonouchi N., Watanabe K. (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Bacterial Cellulose Production by eration and Agitation Culture and Its Application as A New Industrial Material. Bioscience Biotechnology and iochemistry 61(2):219-224. Zaar, K. (1979). 'Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum.' The Journal of Cell Biology 80(3): 773-777. 謝榕庭 (2012) 以Gluconacetobater xylinus生產細菌纖維素之研究. 國立台灣大學化學工程學研究所, 台灣大學. 碩士 黃翔瑜 (2010) 以Gluconacetobater xylinus連續式生產細菌纖維素膜之研究. 國立台灣大學化學工程學研究所, 台灣大學. 碩士 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62018 | - |
| dc.description.abstract | 細菌纖維素由於其獨特的物理、化學特性,使其在許多領域的應用上比植物纖維素具有更高的利用價值,例如食品工業、造紙工業、生醫領域甚至光電設備都可見到細菌纖維素的應用實例。傳統工業生產薄膜形態的細菌纖維素僅能以靜置批次培養的方式生產,此方法得到的纖維素薄膜大小受限於反應器規格,而且操作複雜度較高,培養過程中需反覆進行預活化和後處理的步驟,無形中提高了纖維素薄膜的生產成本且費時。如果改以連續式操作生產將可改善這些缺點。
本研究設計了一個適合以連續式操作生產細菌纖維素的反應器,包括圓木滾輪的設置以便收集纖維素薄膜;反應器中斜面的設置和連接角度的探討以利纖維素薄膜的連接;清洗槽的設計方便清洗甫生成的纖維素薄膜。 在反應器的操作方面,本實驗以4天為一週期以BSH培養基進行連續式操作,實驗結果顯示以每週期添加50ml培養基可得到最高纖維素產率(0.11g-BC/g-glucose)。並在每週期結束後殘留20ml的舊培養基作為下一週期的植菌來源再添加新鮮培養基可得到最高的纖維素總產量。在培養基葡萄糖濃度方面,以添加80g/L葡萄糖濃度的BSH培養基在28天的培養當中可得到最高的纖維素乾重(2.07g),但在產率方面則隨葡萄糖濃度增加而遞減。 同時實驗中也觀察到連續式操作的前兩個週期的行為和第三週期後達穩定狀態時有所不同,原因包括兩者的初始細菌濃度不同以及培養基成分的差異,此結果造成無法利用批次操作的結果來預知連續式操作達穩定後的行為。因此本研究利用增加批次操作的初始細菌濃度以及在培養基中添加特定濃度葡萄糖酸的方式,可使批次操作的結果較接近於連續式操作達穩定後的結果,如此便可利用一次批次操作(4天)來預測連續式操作的結果。 利用連續式操作生產細菌纖維素,在每日平均產量方面是傳統批次培養的2~7倍,同時又省去了批次培養反覆的預活化及後處理等操作成本,因此可有效提升纖維素產量同時降低生產成本。 | zh_TW |
| dc.description.abstract | Traditional methods of producing bacterial cellulose (BC) membranes include batch, static cultivation, which require complex operating procedures because of the repeated preculture and cleaning steps. Also the size of cellulose membranes produced depends on the reactor. Continuous cultivation could improve these disadvantages.
This study designed a continuous culture reactor with a roller to collect the produced cellulose membranes, a ramp to improve the connection beween two membranes and a holding box so that the membranes just produced can be washed immediately. The continuous operation used BSH medium and repeated every 4 days as a cycle. It was found that adding 50ml fresh medium in each cycle gave the best yield. Also, controlling the residual medium at 20ml remaining after each cycle as the bacteria source of next cycle gave highest production. Good BC production was obtained when BSH medium with glucose concentration 80g/L was used during the 28days cultivation, but the yield decreased with increasing glucose concentration. The continuous operation’s results showed that the first two cycles had different behaviors from other cycles. So it was difficult to predict the results of continuous cultivation based on results of batch cultivation. It was because of the difference of initial cell concentration and medium composition between the first two cycles and the others. It was found that adding certain concentration of gluconic acid during batch cultivation could result in similar results as continuous cultivation. The average amounts of BC produced per day by continuous mothod was 2 to 7 times higher than tradition batch cultivation. Contiunous cultivation also reduced the operating cost due to avoiding repeated preculture and cleaning steps. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:23:29Z (GMT). No. of bitstreams: 1 ntu-102-R99524050-1.pdf: 3358942 bytes, checksum: 87be209472b1fadf450236ba30c77255 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 I
摘要 II Abstract III 第一章 緒論 1 第二章 文獻回顧 3 2.1 細菌纖維素介紹 3 2.1.1細菌纖維素的結構 3 2.1.2 細菌纖維素的理化性質 6 2.1.3 細菌纖維素的特性 8 2.1.4 細菌纖維素的應用 11 2.2 細菌纖維素生產菌株 15 2.2.1 Acetobacter xylinum的生理特性 16 2.2.2 細菌纖維素的合成途徑 17 2.2.3 細菌纖維素合成酶的調控機制 25 2.2.4 影響細菌纖維素生成的因素 27 第三章 實驗流程、方法、藥品及儀器 45 3.1 實驗菌株 45 3.2 培養基組成 46 3.3 實驗方法 48 3.3.1 預培養 48 3.3.2 主培養 49 3.3.3 產物處理 49 3.3.4 以DNS試劑測還原糖濃度 50 3.4 實驗藥品 53 3.5 實驗儀器 54 第四章 實驗結果與討論 55 4.1 連續式操作之反應器設計 55 4.1.1 反應器滾輪之設計 55 4.1.2 反應器中纖維素薄膜連接處之設計 61 4.1.3 反應器開口之設計 67 4.1.3 反應器清洗槽之設計 71 4.2 連續式操作中物理因子對 Gluconacetobacter xylinus 生成細菌纖維素產量的影響 74 4.2.1初始培養積體積的影響 74 4.2.2 連續式操作中每一週期結束殘餘之培養基體積對細菌纖維素產量之影響 79 4.2.3培養基中細胞濃度對Gluconacetobacter xylinus生成細菌纖維素產量之影響 85 4.2.4 連續式操作中浸泡對細菌纖維素產量的影響 93 4.3 連續式操作中,葡萄糖濃度對Gluconacetobacter xylinus生成纖維素產量的影響 97 4.3.1 在連續式操作中添加不同葡萄糖濃度的培養基對細菌纖維素產量的影響 97 4.3.2 利用批次操作預測連續式操作時的結果 106 4.4 連續式操作中pH值對Gluconacetobacter xylinus生成纖維素產量的影響 118 4.4.1 添加緩衝能力較佳之培養基 118 4.4.2 以人為方式調控反應器中的pH值 125 4.5 利用連續式操作反應器和其他批次培養方式生成纖維素的產量和產率比較 131 第五章 結論 134 參考文獻 138 | |
| dc.language.iso | zh-TW | |
| dc.subject | 連續式生產 | zh_TW |
| dc.subject | 反應器 | zh_TW |
| dc.subject | 細菌纖維素 | zh_TW |
| dc.subject | Reactor | en |
| dc.subject | Bacterial Cellulose | en |
| dc.subject | Gluconacetobacter xylinus | en |
| dc.title | 以Gluconacetobacter xylinus連續生產細菌纖維素之反應器設計與操作 | zh_TW |
| dc.title | Reactor Design and Operation of Continuous Production of Bacterial Cellulose by Gluconacetobacter xylinus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李振綱,吳聲祺,賴進此 | |
| dc.subject.keyword | 細菌纖維素,反應器,連續式生產, | zh_TW |
| dc.subject.keyword | Reactor,Bacterial Cellulose,Gluconacetobacter xylinus, | en |
| dc.relation.page | 144 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
