請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62001完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗男(Tsung-Nan Lin) | |
| dc.contributor.author | Chung-Wei Lee | en |
| dc.contributor.author | 李崇瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:22:37Z | - |
| dc.date.available | 2018-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-24 | |
| dc.identifier.citation | [1] M. McGuire, K. Plataniotis, and A. Venetsanopoulos, “Data Fusion of Power and Time Measurements for Mobile Terminal Location,” IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp. 142–153, 2005. 1
[2] S. Golden and S. Bateman, “Sensor Measurements for Wi-Fi Location with Emphasis on Time-of-Arrival Ranging,” IEEE Transactions on Mobile Computing, vol. 6, no. 10, pp. 1185–1198, 2007. 1 [3] S.-H. Fang, T.-N. Lin, and P.-C. Lin, “Location Fingerprinting In A Decorrelated Space,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 5, pp. 685–691, 2008. 1 [4] H. Lim, L.-C. Kung, J. C. Hou, and H. Luo, “Zero-Configuration, Robust Indoor Localization: Theory and Experimentation,” in INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings, 2006, pp. 1–12. 1 [5] S.-H. Fang and T.-N. Lin, “Principal Component Localization in Indoor WLAN Environments,” IEEE Transactions on Mobile Computing, vol. 11, no. 1, pp. 100–110, 2012. 1, 14, 16, 17 [6] Y. Chen, Q. Yang, J. Yin, and X. Chai, “Power-Efficient Access-Point Selection for Indoor Location Estimation,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 7, pp. 877–888, 2006. 2, 5, 24 [7] C. Feng, W. S. A. Au, S. Valaee, and Z. Tan, “Received Signal Strength Based Indoor Positioning Using Compressive Sensing,” IEEE Transactions on Mobile Computing, vol. 11, no. 12, pp. 1983–1993, 2012. 2, 5, 28 [8] M. Youssef, A. Agrawala, and A. U. Shankar, “WLAN Location Determination via Clustering and Probability Distributions,” in IEEE PerCom, 2003. 2, 5 [9] C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. 2, 8 [10] P. Bahl and V. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, 2000, pp. 775–784 vol.2. 4, 28 [11] Y. Mo, Z. Cao, and B. Wang, “Occurrence-Based Fingerprint Clustering for Fast Pattern-Matching Location Determination,” Communications Letters, IEEE, vol. 16, no. 12, pp. 2012–2015, 2012. 4 [12] S.-P. Kuo, B.-J. Wu, W.-C. Peng, and Y.-C. Tseng, “Cluster-Enhanced Techniques for Pattern-Matching Localization Systems,” in IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, 2007, pp. 1–9. 4 [13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wileyinterscience, 2012. 5 [14] B. J. Frey and D. Dueck, “Clustering by Passing Messages Between Data Points,” Science, vol. 315, no. 5814, pp. 972–976, 2007. 5, 10 [15] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, “A Support Vector Clustering Method,” in Proc. Int. Conf. Pattern Recognition, vol. 2, 2000, pp. 724–727. 5 [16] A. Kushki, K. N. Plataniotis, and A. N. Venetsanopoulos, “Kernel-Based Positioning in Wireless Local Area Networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 6, pp. 689–705, 2007. 7, 17, 28 [17] G. Baudat and F. Anouar, “Kernel-based Methods and Function Approximation,” in Proc. Int. Conf. Neural Networks, vol. 2, 2001, pp. 1244–1249. 8 [18] Q. Chang, Q. Chen, and X. Wang, “Scaling Gaussian RBF Kernel Width to Improve SVM Classification,” in Proc. Int. Conf. Neural Networks and Brain, vol. 1, 2005, pp. 19–22. 9 [19] C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002. 14 [20] Netstumbler. http://www.netstumbler.com. 19 [21] M. Youssef and A. Agrawala, “The Horus WLAN location determination system,” in Proceedings of the 3rd international conference on Mobile systems, applications, and services, 2005, pp. 205–218. 28 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62001 | - |
| dc.description.abstract | 此研究提出了一種基於新穎群聚演算法的Wi-Fi指紋辨識定位演算法。該技術利用基於支持向量機的新穎群聚方法稱MP-C,我們基於支持向量機邊界的大小進行分類,而不是傳統的方法只參考位置訊號強度重心之間的歐幾里德距離。MP-C創建群聚的定位指紋資料後,我們的定位系統嵌入分類機制來協助定位任務並改善巨大資料庫搜索的問題。此演算法分配測試資料到對應的群集,並用這些對應到的群集資料來估測位置以降低計算複雜度,並過濾掉會影響估測位置的離群資料。我們從實際的無線網絡環境實驗結果證明該方法明顯地提高了定位精度。相對於現有的三個傳統基於群聚的方法,K-均值,親和傳播,與支持向量群聚,分別降低了平均定位誤差達30.34%、30.98%和34.76%。 | zh_TW |
| dc.description.abstract | This study proposes a novel clustering-based Wi-Fi fingerprinting localization algorithm. The proposed algorithm first presents a novel clustering approach based on support vector machine based, namely MP-C, which uses the margin between two canonical hyperplanes for classification rather than the Euclidean distance between two centroids of reference locations’ RSS. After creating the clusters of fingerprints by MP-C, our positioning system embeds the classification mechanism into a positioning task and compensates for the large database searching problem. The proposed algorithm assigns the matched cluster surrounding the test sample and locates the user based on the corresponding cluster’s fingerprints
to reduce the computational complexity and remove estimation outliers. Experimental results from realistic Wi-Fi test-beds demonstrated that our approach apparently improves the positioning accuracy. As compared to three existing clustering-based methods, K-means, affinity propagation, and support vector clustering, the proposed algorithm reduces the mean localization errors by 30.34%, 30.98%, and 34.76%, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:22:37Z (GMT). No. of bitstreams: 1 ntu-102-R00942128-1.pdf: 1200618 bytes, checksum: d9cc634a161939ee181d90be4ebc155e (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Related Works 4 3 Proposed localization system 7 3.1 SVM Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Margin Propagation Clustering (MP-C) . . . . . . . . . . . . . . . 9 3.3 Cluster Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Location Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Experimental Results 19 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Comparison of Clustering Results . . . . . . . . . . . . . . . . . . 20 4.3 Localization Performance . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 Comparison of Different Fingerprinting and Dimension Reduction Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5 Comparison of Different Localization Systems . . . . . . . . . . . 28 4.6 Reduction of Training Samples . . . . . . . . . . . . . . . . . . . . 29 4.7 Evaluation in Different Test-beds . . . . . . . . . . . . . . . . . . 29 5 Conclusion 34 Bibliography 35 | |
| dc.language.iso | en | |
| dc.subject | 群聚演算法 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | 群聚演算法 | zh_TW |
| dc.subject | 位置指紋識別 | zh_TW |
| dc.subject | 行動定位系統 | zh_TW |
| dc.subject | 行動定位系統 | zh_TW |
| dc.subject | 位置指紋識別 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | clustering | en |
| dc.subject | mobile positioning | en |
| dc.subject | location fingerprinting | en |
| dc.subject | support vector machine | en |
| dc.subject | mobile positioning | en |
| dc.subject | location fingerprinting | en |
| dc.subject | clustering | en |
| dc.subject | support vector machine | en |
| dc.title | 基於新穎群聚演算法之室內定位系統 | zh_TW |
| dc.title | A Novel Clustering-Based Approach of Indoor
Location Fingerprinting | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖婉君(Wan-Jiun Liao),陳俊良(Jiann-Liang Chen),蔡子傑(Tzu-Chieh Tsai) | |
| dc.subject.keyword | 行動定位系統,位置指紋識別,群聚演算法,支持向量機, | zh_TW |
| dc.subject.keyword | mobile positioning,location fingerprinting,clustering,support vector machine, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
