Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor萬本儒(Ben-Zu Wan)
dc.contributor.authorChiung-Yun Changen
dc.contributor.author張瓊云zh_TW
dc.date.accessioned2021-06-16T13:22:31Z-
dc.date.available2023-07-25
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-25
dc.identifier.citation1. Volksen, W., R.D. Miller, and G. Dubois, Low dielectric constant materials. Chem Rev, 2010. 110(1): p. 56-110.
2. Bakoglu, H.B. and J.D. Meindl, Optimal interconnection circuits for VLSI. Electron Devices, IEEE Transactions on, 1985. 32(5): p. 903-909.
3. Ho, P.S., J. Leu, and W.W. Lee, Overview on Low Dielectric Constant Materials for IC Applications, in Low Dielectric Constant Materials for IC Applications, P. Ho, J. Leu, and W. Lee, Editors. 2003, Springer Berlin Heidelberg. p. 1-21.
4. Edelstein, D., et al. Full copper wiring in a sub-0.25 μm CMOS ULSI technology. in Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International. 1997.
5. W. W. Lee, P.S.H., Low-dielectric-constant materials for ULSI interlayer-dielectric applications. MRS Bulletin., 1997. 22(10): p. 19-24.
6. Semiconductors, T.I.T.R.f., http://www.itrs.net/Links/2012ITRS/Home2012.htm, 2012.
7. Xiao, H., Introduction to semiconductor manufacturing technology. 2001: p. 481.
8. Tsai, C.-T., et al., Increasing mechanical strength of mesoporous silica thin films by addition of tetrapropylammonium hydroxide and refluxing processes. Thin Solid Films, 2009. 517(6): p. 2039-2043.
9. Maex, K., et al., Low dielectric constant materials for microelectronics. Journal of Applied Physics, 2003. 93(11): p. 8793-8841.
10. Shen, L. and K. Zeng, Comparison of mechanical properties of porous and non-porous low-dielectric films. Microelectron. Eng., 2004. 71(2): p. 221-228.
11. Bhan, M.K., J. Huang, and D. Cheung, Deposition of stable, low κ and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films. Thin Solid Films, 1997. 308–309(0): p. 507-511.
12. Reynard, J.P., et al., Integration of fluorine-doped silicon oxide in copper pilot line for 0.12-μm technology. Microelectronic Engineering, 2002. 60(1–2): p. 113-118.
13. Tada, M., et al., Chemical structure effects of ring-type siloxane precursors on properties of plasma-polymerized porous SiOCH films. Journal of The Electrochemical Society, 2007. 154(7): p. D354-D361.
14. Pease, R.F., et al., Prospects for charged particle lithography as a manufacturing technology. Microelectron. Eng., 2000. 53(1-4): p. 55-60.
15. Flanigen, E.M., et al., Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 1978. 271: p. 512-516.
16. Hong, M., J.L. Falconer, and R.D. Noble, Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane. Industrial & engineering chemistry research, 2005. 44(11): p. 4035-4041.
17. Lu, H.-Y., C.-H. Kung, and B.-Z. Wan, Crystallinity control of zeolite nanoparticles for the preparation of mesoporous low- k films through a fast hydrothermal process. Journal of the Taiwan Institute of Chemical Engineers, 2012.
18. A trademark of ASM. For more information about the material see www.asm.com.
19. Hait, S. and S. Moulik, Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with lodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. Journal of Surfactants and Detergents, 2001. 4(3): p. 303-309.
20. Wang, J., et al., Thickness dependence of morphology and mechanical properties of on-wafer low-k PTFE dielectric films. Thin Solid Films, 2000. 377: p. 413-417.
21. Murray, C., et al., Comparison of techniques to characterise the density, porosity and elastic modulus of porous low-k SiO2 xerogel films. Microelectronic Engineering, 2002. 60(1–2): p. 133-141.
22. Baskaran, S., et al., Low Dielectric Constant Mesoporous Silica Films Through Molecularly Templated Synthesis. Advanced Materials, 2000. 12(4): p. 291-294.
23. Y. Yan, et al., Pure-silica-zeolite low-k dielectric thin films. Adv. Mater., 2001. 13: p. 746.
24. 牟中原, 李., 微胞、微乳液的形成. Science Monthly, 1994. 298.
25. Firouzi, A., et al., COOPERATIVE ORGANIZATION OF INORGANIC-SURFACTANT AND BIOMIMETIC ASSEMBLIES. Science, 1995. 267(5201): p. 1138-1143.
26. Beck, J.S., et al., A new family of mesoporous molecular sieve prepared with liquid crystal templated. J. Am. Chem. Soc., 1992. 114: p. 10834.
27. D. Zhau, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998. 279: p. 548.
28. S. Baskaran, J. Liu, and K. Domansky, Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv. Mater., 2000. 12: p. 291.
29. Ting, C.-Y., D.-F. Ouyan, and B.-Z. Wan, Preparation of ultralow dielectric-constant porous silica films using Tween 80 as a template. Journal of the Electrochemical Society, 2003. 150(8): p. F164-F167.
30. Ting, C.-Y., et al., Template effects on low k materials made from spin-on mesoporous silica, in Nanotechnology in Mesostructured Materials, S.E. Park, et al., Editors. 2003, Elsevier Science Bv: Amsterdam. p. 391-394.
31. Ting, C.-Y., et al., Low dielectric constant silica films prepared by a templating method. Journal of the Chinese Institute of Chemical Engineers, 2003. 34(2): p. 211-217.
32. Cho, A.T., et al., The preparation of mesoporous silica ultra-low-k film using ozone ashing treatment. Thin Solid Films, 2005. 483(1-2): p. 283-286.
33. Zhu, S.M., et al., Preparation and characterization of SiC/cordierite composite porous ceramics. Ceramics International, 2007. 33(1): p. 115-118.
34. 蔡承宗, 改良孔洞型二氧化矽低介電係數薄膜機械性質. 國立台灣大學化學工程學系碩士論文, 2004.
35. Davis, M.E. and R.F. Lobo, ZEOLITE AND MOLECULAR-SIEVE SYNTHESIS. Chemistry of Materials, 1992. 4(4): p. 756-768.
36. Wang, Z.B., et al., Pure silica zeolite films as low-k dielectrics by spin-on of nanoparticle suspensions. Advanced Materials, 2001. 13(19): p. 1463-+.
37. Wang, Z.B., et al., Pure-silica zeolite low-k dielectric thin films. Advanced Materials, 2001. 13(10): p. 746-749.
38. Li, Z.J., et al., Effects of crystallinity in spin-on pure-silica-zeolite MFI low-dielectric-constant films. Advanced Functional Materials, 2004. 14(10): p. 1019-1024.
39. Nobuhiro Hata, G.G., Takenobu Yoshino, Syozo Takada, Zeolite nano-crystal suspension, zeolite nano-crystal production method, zeolite nano-crystal suspension production method, and zeolite thin film, in United States Patent. 2008, National Institute of Advanced Industrial Science and Technology, Tokyo (lP).
40. Eslava, S., et al., Characterization of spin-on zeolite films prepared from Silicalite-1 nanoparticle suspensions. Microporous and Mesoporous Materials, 2009. 118(1-3): p. 458-466.
41. Lu, H.-Y., et al., Addition of Surfactant Tween 80 in Coating Solutions for Making Mesoporous Pure Silica Zeolite MFI Low-k Films. Industrial & Engineering Chemistry Research, 2010. 49(14): p. 6279-6286.
42. Lu, H.-Y., et al., Preparing Mesoporous Low-k Films with High Mechanical Strength from Noncrystalline Silica Particles. Industrial & Engineering Chemistry Research, 2011. 50(6): p. 3265-3273.
43. Paria, S. and K.C. Khilar, A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Adv Colloid Interface Sci, 2004. 110(3): p. 75-95.
44. Somasundaran, P. and L. Huang, Adsorption/aggregation of surfactants and their mixtures at solid–liquid interfaces. Advances in Colloid and Interface Science, 2000. 88(1–2): p. 179-208.
45. Rosen, M.J. and J.T. Kunjappu, Surfactants and interfacial phenomena. 2012: Wiley.
46. Mohammad, A. and S. Bhawani, Silica gel thin-layer chromatographic separation of cetylpyridinium chloride (CPC) from polyoxyethylene (20) sorbitan monolaurate (Tween-20).
47. Aston, J.R., et al., Adsorption of nonyl phenol ethoxylates on hydrophobic and hydrophilic surfaces, in Studies in Surface Science and Catalysis, J. Rouquerol and K.S.W. Sing, Editors. 1982, Elsevier. p. 97-102.
48. Rupprecht, H., Sorption van Tensiden an Festkorperoberflachen und ihre Bedeutung im Bereich der Arzneiformen, in Progress in Colloid & Polymer Science, G. Lagaly, F.H. Muller, and A. Weiss, Editors. 1978, Steinkopff. p. 29-44.
49. Fu, R., et al., Preparation of nearly monodispersed Fe3O4/SiO2 composite particles from aggregates of Fe3O4 nanoparticles. Journal of Materials Chemistry, 2011. 21(39): p. 15352-15356.
50. Kang, J.-W., et al., Coating composition for film with low refractive index and film prepared therefrom. 2010, US Patents 7709551.
51. R. Byron Bird, W.E.S., Edwin N. Lightfoot, Transport phenomena. 2001.
52. McNaught, A.D. and A. Wilkinson, Compendium of chemical terminology. Vol. 1669. 1997: Blackwell Science Oxford.
53. Seaton, N. and J. Walton, A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon, 1989. 27(6): p. 853-861.
54. Zhang, X., et al., Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. science, 2012. 336(6089): p. 1684-1687.
55. Barrett, E.P., L.G. Joyner, and P.P. Halenda, THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS. Journal of the American Chemical Society, 1951. 73(1): p. 373-380.
56. 丁志華, et al., 奈米壓痕量測系統簡介. 奈米通訊 (NDL), 2002. 9(3): p. 4-10.
57. Persson, A., et al., The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites, 1994. 14(7): p. 557-567.
58. Lastoskie, C., K.E. Gubbins, and N. Quirke, Pore size distribution analysis of microporous carbons: a density functional theory approach. The journal of physical chemistry, 1993. 97(18): p. 4786-4796.
59. Ting, C.-Y., et al., Porosity effects on properties of mesoporous silica low-k films prepared using tetraethylorthosilicate with different templates. Journal of the Electrochemical Society, 2007. 154(1): p. G1-G5.
60. Lide, D.R. and T.J. Bruno, CRC handbook of chemistry and physics. 2012: CRC PressI Llc.
61. Liu, P.T., et al., Improvement in integration issues for organic low-k hybrid-organic-siloxane-polymer. Journal of the Electrochemical Society, 2001. 148(2): p. F30-F34.
62. Bertoluzza, A., et al., RAMAN AND INFRARED-SPECTRA ON SILICA-GEL EVOLVING TOWARD GLASS. Journal of Non-Crystalline Solids, 1982. 48(1): p. 117-128.
63. Pandey, R.K., et al., Growth and characterization of SiON thin films by using thermal-CVD machine. Optical Materials, 2004. 25(1): p. 1-7.
64. Kayaba, Y., et al., Ionic Vibration Spectrum of Nanocrystalline MEL Pure Silica Zeolite Film. Journal of Physical Chemistry C, 2011. 115(23): p. 11569-11574.
65. Grill, A. and D.A. Neumayer, Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. Journal of Applied Physics, 2003. 94(10): p. 6697-6707.
66. Lenza, R. and W. Vasconcelos, Structural evolution of silica sols modified with formamide. Materials Research, 2001. 4(3): p. 175-179.
67. McBain, J.W. and C. Salmon, COLLOIDAL ELECTROLYTES. SOAP SOLUTIONS AND THEIR CONSTITUTION. 2. Journal of the American Chemical Society, 1920. 42(3): p. 426-460.
68. al, W.M.e., Colloids and their viscosity : Discussion // Faraday Society : Transactions., 1913. 9: p. 99-107.
69. Sigma-Aldrich, Product infromation P 8074. 2006.
70. Moh’d A, S. and J. Wiegel, Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from Thermosyntropha lipolytica. The open biochemistry journal, 2010. 4: p. 22.
71. Prajapati, K. and S. Patel, Micellization of Surfactants in Mixed Solvent of Different Polarity. Archives of Applied Science Research, 2012. 4(1): p. 662-668.
72. Ko, S.-O., M.A. Schlautman, and E.R. Carraway, Effects of solution chemistry on the partitioning of phenanthrene to sorbed surfactants. Environmental science & technology, 1998. 32(22): p. 3542-3548.
73. Wennerstrom, H. and B. Lindman, Micelles. Physical chemistry of surfactant association. Physics Reports, 1979. 52(1): p. 1-86.
74. Mitchell, D.J., et al., Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points). J. Chem. Soc., Faraday Trans. 1, 1983. 79(4): p. 975-1000.
75. Zulauf, M., Detergent phenomena in membrane protein crystallization. Crystallization of membrane proteins, 1991: p. 54-71.
76. Weckstrom, K., Aqueous micellar systems in membrane protein crystallization: partial miscibility of a nonionic surfactant in the presence of salt or polyethylene glycol. FEBS letters, 1985. 192(2): p. 220-224.
77. Sharma, K.S., et al., Small-angle neutron scattering studies of nonionic surfactant: Effect of sugars. Pramana, 2004. 63(2): p. 297-302.
78. Mohajeri, E. and G.D. Noudeh, Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: Polyoxyethylene Sorbitan Fatty Acid Esters. Journal of Chemistry, 2012. 9(4): p. 2268-2274.
79. Miyagishi, S., et al., Effect of NaCl on Aggregation Number, Microviscosity, and Cmc of N -Dodecanoyl Amino Acid Surfactant Micelles. Journal of Colloid and Interface Science, 1996. 184(2): p. 527-534.
80. Gao, J., W. Ge, and J. Li, Effect of concentration on surfactant micelle shapes —A molecular dynamics study. Science in China Series B: Chemistry, 2005. 48(5): p. 470-475.
81. Bloor, J., J. Morrison, and C. Rhodes, Effect of pH on the micellar properties of a nonionic surfactant. Journal of pharmaceutical sciences, 1970. 59(3): p. 387-391.
82. McGraw-Hill, Handbook of Optics. 2009. 4
83. 鄭有舜、韋光華, 高通量寬能帶的同步輻射小角度X 光散射在奈米結構研究上之應用. 物理雙月刊, 2008. 30(1).
84. Chamard, V., et al., Evidence of pore correlation in porous silicon: An x-ray grazing-incidence study. Physical Review B, 2001. 64(24): p. 245416.
85. 陳信龍、鄭有舜, 小角度X 光散射在高分子奈米結構解析之應用. 科儀新知, 2007. 29(2).
86. 鄭有舜, X-光小角度散射在軟物質研究上的應用. 物理雙月刊, 2004. 26(2).
87. Schmidt, P.W., Small-angle scattering studies of disordered, porous and fractal systems. Journal of Applied Crystallography, 1991. 24(5): p. 414-435.
88. Chen, S.-H., Small angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems. Annual Review of Physical Chemistry, 1986. 37(1): p. 351-399.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61999-
dc.description.abstract近年來有很多文獻利用純二氧化矽沸石的鍍膜溶液,製備出孔洞型二氧化矽低介電薄膜。而根據本實驗室過去的研究,已發展出使用短時間水熱程序,製備出非結晶型二氧化矽奈米顆粒的鍍膜溶液,並可製備出介電係數小於2、且高機械強度的薄膜。本研究承接前人的研究成果,將探討不同濃度的結構導向試劑對低介電係數薄膜所造成的影響。
本研究使用TPAOH (Tetrapropylammonium hydroxide) 作為結構導向試劑,在水熱程序的前驅液中,改變TPAOH/TEOS的莫耳比作為變因,使用比例為0.15、0.25與0.36,並研究所製備出的非結晶型二氧化矽奈米顆粒與薄膜。研究的方向將針對不同莫耳比例(TPAOH/TEOS)對於二氧化矽奈米顆粒粒徑、顆粒表面的鍵結、孔洞型薄膜的孔徑分佈、介電係數、漏電流密度、機械強度與薄膜表面型態等性質所造成的影響,供日後改善製程及其他應用的參考。
實驗結果發現,隨著TPAOH濃度的增加,將使奈米顆粒粒徑縮小。另外,TPAOH濃度也會影響奈米顆粒表面的Si-OH基團數量,導致顆粒表面的親水性質不同,進而影響界面活性劑形成不同程度的聚集。當TPAOH濃度愈低,顆粒表面Si-OH基團越少,親水性較低,而傾向驅使鍍膜溶液中的界面活性劑形成較大的團聚,所製備出的薄膜表面會產生微米級孔洞,而此孔洞會導致薄膜的電性與機械強度不佳;另外,顆粒表面含有較少的Si-OH基團,亦會使顆粒彼此間不易形成縮合鍵結,而降低薄膜機械強度。反之,當TPAOH濃度愈高時,顆粒表面Si-OH基團越多,顆粒表面較親水而傾向使界面活性劑分子吸附於顆粒表面,鍍膜溶液中的微胞較小,因此製備出的薄膜較平整,且薄膜k值為1.94,硬度是1.50 GPa,彈性模數是13.36 GPa,漏電流密度為5.69×10-9A/cm2,其性質皆符合工業標準。
zh_TW
dc.description.abstractThe syntheses of coating solutions with pure silica MFI-type zeolite for the preparation of porous low dielectric constant (low-k) films were reported in literatures. In our previous study, short hydrothermal process for producing coating solutions mainly containing noncrystalline silica has been developed for the preparation of low-k films. The films with not only a k value below 2 but also a high mechanical strength can be obtained. To continue with the research, the effect of concentration of tetrapropylammonium hydroxide (TPAOH, as structure directing agent) on properties of low-k films has been investigated.
In this research, the motivation is to study the effect of TPAOH concentration on properties of noncrystalline silica nanoparticles (such as particle size and surface hydrophilic property) and on properties of corresponding low-k films (such as pore properties, dielectric constant, leakage current density, mechanical properties and surface morphology). The properties were examined and discussed in details.
It is found that the nanoparticle size decreases with the increase of the TPAOH concentration in the precursor solution. In addition, the content of silanol groups on the surface of silica nanoparticles would also be influenced by the TPAOH concentration. They increase with the increase of the TPAOH concentration. The silica nanoparticles with different surface silanol groups should possess different hydrophilic properties, and therefore would influence the behavior of surfactants in the coating solutions. The lower content of surface silanol groups would lead to the formation of more aggregates of surfactants, resulting in the existence of micro-sized pore on the film surface and thereby causing the electrical properties and mechanical properties of the films to become worse. In addition, the lower content of surface silanol groups on silica nanoparticles would have a negative effect on crosslink formation between different silica nanoparticles, which would contribute to the decrease of mechanical strength of the films. In contrast, the films preprared form silica nanoparticles with higher content of surface silanol groups can possess a uniform surface, an ultra-low k value of 1.94, a high hardness of 1.50 GPa, a high elastic modulus of 13.36 GPa, and a low leakage current density of 5.69×10-9A/cm2.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:22:31Z (GMT). No. of bitstreams: 1
ntu-102-R00524018-1.pdf: 3716723 bytes, checksum: 48f3e0c03bcfc016d3dd4c9443d5c6f1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書…………………………………………………………………………i
誌謝 ii
中文摘要 iii
英文摘要……………………………………………………………………………..iv
目錄……………………………………………………………………………………v
圖目錄 vii
表目錄 ix
一、緒論 1
1-1 研究背景 1
1-2 低介電係數材料 2
1-2-1 有機高分子低介電材料 3
1-2-2 矽烷混合介電材料 4
1-2-3 二氧化矽介電材料 4
1-3 孔洞型二氧化矽低介電材料製備方法 7
1-3-1 氣凝膠/乾凝膠法 7
1-3-2 界面活性劑模板法 7
1-3-3 水熱法 11
1-4 界面活性劑吸附 14
1-5 結構導向試劑濃度的影響-研究動機 15
1-6 研究目標 16
二、實驗 17
2-1 實驗藥品 17
2-2 實驗儀器 18
2-3 實驗步驟 19
2-3-1 清洗基板 19
2-3-2 製備鍍液與低介電薄膜 20
2-4 實驗鑑定 22
2-4-1 溶液性質鑑定 22
2-4-1-1 動態雷射光散射分析 22
2-4-2 粉末性質鑑定 23
2-4-2-1矽譜固態核磁共振儀分析 23
2-4-2-2 氮氣吸脫附儀分析 23
2-4-3 薄膜性質鑑定 24
2-4-3-1 電性之介電係數量測 24
2-4-3-2 電性之漏電流密度量測 26
2-4-3-3 傅立葉轉換光譜儀分析 26
2-4-3-4 電子顯微鏡觀測 27
2-4-3-5 原子力顯微鏡量測 27
2-4-3-6奈米壓痕量測系統 27
三、結果與討論 28
3-1 TPAOH濃度對所製備出的非結晶型二氧化矽奈米顆粒的影響 28
3-1-1 動態雷射光散射儀分析顆粒粒徑 28
3-1-2 矽譜固態核磁共振儀分析顆粒表面性質 29
3-1-3 粉末孔隙度與孔徑分析 31
3-1-3-1 鑑定非結晶型二氧化矽奈米顆粒的微孔洞 32
3-1-3-2 鑑定界面活性劑之微胞形成的孔洞 35
3-2 TPAOH含量不同之前驅液所製備出的薄膜性質 38
3-2-1 薄膜表面之官能基鑑定 38
3-2-2 薄膜表面形貌 40
3-2-3 測量薄膜的電性與機械強度 47
3-3 探討薄膜k值差異的原因 47
3-4探討薄膜機械強度差異的原因 51
3-5 討論薄膜表面形貌的差異 53
3-5-1 薄膜鍛燒前後的表面形貌 53
3-5-2 探討顆粒表面性質影響微胞行為的機制 56
3-5-3 探討微胞的變化 57
四、結論 60
五、參考文獻 62
六、附錄 68
6-1 電壓電流的量測數值 68
6-2 使用橢圓儀量測薄膜的折射率 68
6-3 使用Grazing-incidence small-angle scattering(低掠角小角度X光散射儀)分
析薄膜中的孔徑 69
dc.language.isozh-TW
dc.subject中孔洞型低介電薄膜zh_TW
dc.subject四丙基氫氧化氨(TPAOH)zh_TW
dc.subject非結晶型二氧化矽顆粒zh_TW
dc.subject界面活性劑Tween 80zh_TW
dc.subject微胞zh_TW
dc.subjectMesoporous low-k filmsen
dc.subjectTetrapropylammonium hydroxide (TPAOH)en
dc.subjectNoncrystalline silica nanoparticlesen
dc.subjectTween 80en
dc.subjectMicellesen
dc.title以不同濃度的結構導向試劑TPAOH製備多孔型低介電薄膜zh_TW
dc.titlePreparation of Porous Silica Low-k Films by Using Different Concentration of Structure Directing Agent TPAOHen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文發,呂志鵬,丁致遠
dc.subject.keyword中孔洞型低介電薄膜,四丙基氫氧化氨(TPAOH),非結晶型二氧化矽顆粒,界面活性劑Tween 80,微胞,zh_TW
dc.subject.keywordMesoporous low-k films,Tetrapropylammonium hydroxide (TPAOH),Noncrystalline silica nanoparticles,Tween 80,Micelles,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2013-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved