Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61984
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李士傑(Shyh-Jye Lee)
dc.contributor.authorYu-Chuan Hsiaoen
dc.contributor.author蕭諭娟zh_TW
dc.date.accessioned2021-06-16T13:21:46Z-
dc.date.available2023-06-04
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-25
dc.identifier.citationReferences
Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281-297.
Barton BA. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids.
Barton BA. 2002.Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and comparative biology 42(3): 517-525.
Brett JR. 1971.Energetic Responses of Salmon to Temperature. A Study of Some Thermal Relations in the Physiology and Freshwater Ecology of Sockeye Salmon (Oncorhynchus nerka). American Zoologist 11(1): 99-113.
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL,Wang DZ. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature genetics 38(2): 228-233.
Chen WH, Sun LT, Tsai CL, Song YL, Chang CF. 2002. Cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia. General and comparative endocrinology 126(1): 90-100.
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K,Shiekhattar R. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051): 740-744.
Chou MY, Hsiao CD, Chen SC, Chen IW, Liu ST, Hwang PP. 2008. Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. The Journal of experimental biology 211(Pt 19): 3077-3084.
Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS. 2008. Cold shock and fish.Journal of fish biology 73(7): 1491-1530.
Flos R, Reig L, Torres P, Tort L. 1988. Primary and econdary Stress Responses to Grading and Hauling in Rainbow-Trout, Salmo-Gairdneri. Aquaculture 71(1-2):99-106.
Flynt AS, Thatcher EJ, Burkewitz K, Li N, Liu Y, Patton JG. 2009. miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. The Journal of cell biology 185(1): 115-127.
Fry FEJ. 1947. Effects of the Environment on Animal Activity. University of Toronto Press.
Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM et al. 2009. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes & development 23(11):
1313-1326.
Gracey AY. 2007. Interpreting physiological responses to environmental change through gene expression profiling. The Journal of experimental biology 210(Pt 9): 1584-1592.
Gracey AY, Fraser EJ, Li W, Fang Y, Taylor RR, Rogers J, Brass A, Cossins AR. 2004.Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proceedings of the National Academy of Sciences of the United States of America 101(48): 16970-16975.
Iwama GK, Vijayan MM, Forsyth RB, Ackerman PA. 1999. Heat shock proteins and physiological stress in fish. American Zoologist 39(6): 901-909.
Jiang W, Hou Y, Inouye M. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. The Journal of biological chemistry 272(1): 196-202.
Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular cell 14(6):787-799.
Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. 2005. Temperature regulates transcription in the zebrafish circadian clock. PLoS biology 3(11): e351.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al.2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956): 415-419.
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. 2004. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 23(20): 4051-4060.
Leung AK, Sharp PA. 2007. microRNAs: a safeguard against turmoil? Cell 130(4):581-585. 2010. MicroRNA functions in stress responses. Molecular cell 40(2): 205-215.
Long Y, Li L, Li Q, He X, Cui Z. 2012. Transcriptomic characterization of temperature stress responses in larval zebrafish. PloS one 7(5): e37209.
Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. 2004. Nuclear export of microRNA precursors. Science 303(5654): 95-98.
Marcel Martinez-Porchas LRM-CRR-E. 2009. Cortisol and Glucose: Reliable indicators of fish stress?
Mazeaud M, Mazeaud F. 1981. Adrenergic responses to stress in fish. Stress and fish:49-75.
Mazeaud MM, Mazeaud F, Donaldson EM. 1977. Primary and Secondary Effects of Stress in Fish - Some New Data with a General Review. T Am Fish Soc 106(3):201-212.
Metzker ML. 2010. Sequencing technologies - the next generation. Nature reviews Genetics 11(1): 31-46.
Spence R, Gerlach G, Lawrence C, Smith C. 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biological reviews of the Cambridge Philosophical
Society 83(1): 13-34.
Sweeney BM, Hastings JW. 1960. Effects of Temperature Upon Diurnal Rhythms. Cold Spring Harb Sym 25: 87-104.
Thieringer HA, Jones PG, Inouye M. 1998. Cold shock and adaptation. BioEssays :news and reviews in molecular, cellular and developmental biology 20(1):49-57.
Vergauwen L, Benoot D, Blust R, Knapen D. 2010. Long-term warm or cold acclimation elicits a specific transcriptional response and affects energy metabolism in zebrafish. Comparative biochemistry and physiology Part A,
Molecular & integrative physiology 157(2): 149-157.
Wienholds E, Plasterk RH. 2005. MicroRNA function in animal development. FEBS letters 579(26): 5911-5922.
Wilfred BR, Wang WX, Nelson PT. 2007. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular genetics and metabolism 91(3):209-217.
Winter J, Jung S, Keller S, Gregory RI, Diederichs S. 2009. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nature cell biology 11(3):228-234.
Yan B, Zhao LH, Guo JT, Zhao JL. 2012. miR-429 regulation of osmotic stress transcription factor 1 (OSTF1) in tilapia during osmotic stress. Biochemical and biophysical research communications 426(3): 294-298.
Yang R, Dai Z, Chen S, Chen L. 2011. MicroRNA-mediated gene regulation plays a minor role in the transcriptomic plasticity of cold-acclimated zebrafish brain tissue. BMC genomics 12: 605.
Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W. 2008.Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et biophysica acta 1779(11): 780-788.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61984-
dc.description.abstractCold shock is an acute reduction in ambient temperature that may cause rapid falling in body temperature and a cascade of physiological and behavioral responses. It is a big challenge for the survival of fish during winter. Previous works have provided solid information for fish mortality and physiological responses associated with cold shock. However, little is known for the molecular mechanisms regulating cold-shock responses. MicroRNAs (miRNAs) are noncoding small RNAs which play essential regulatory roles in development, cell differentiation, and metabolism. Moreover, few studies studied the roles of miRNAs for physiological response to environmental stresses in fish. To explore the role of miRNAs during cold shock, we performed genome-wide zebrafish miRNAs pattern analysis. We found 29 up-regulated miRNAs and 26 down-regulated miRNAs in cold-treated zebrafish larvae and obtained their target genes by bioinformatics analysis. We also found 1,424 cold-dependent genes using transcriptomic analysis. These genes are significant involved in signaling pathway, ligand-receptor interaction, lipid metabolism and biosynthesis. These genes are functional relevant to cold shock stress. In conclusion, our results reveal a potential regulatory role of miRNAs in underline cellular responses induced by cold shock stress. Here, we have studied several of those miRNAs and their target gene, such as circadian genes, to explore their roles in cold shock regulation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:21:46Z (GMT). No. of bitstreams: 1
ntu-102-R00b41011-1.pdf: 7105796 bytes, checksum: 68daef51192764f7d5f07e8350bfdf09 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
中文摘要 ...................................................................................................I
Abstract ...................................................................................................II
Contents ..................................................................................................IV
List of Tables ...........................................................................................VI
List of Figures ..........................................................................................VI
Introduction ................................................................................................1
Environmental stress .................................................................................1
Cold shock response .................................................................................1
Cold shock affect gene expression ..............................................................3
MiRNA and function ...................................................................................3
Objectives of this study .............................................................................5
Materials and Methods .............................................................................7
Fish maintenance and embryo collection ......................................................7
Total RNA isolation, construction of miRNA libraries, and sequencing ............7
Total RNA isolation, construction of cDNA libraries, and sequencing ..............8
MiRNA identification and annotation ...........................................................9
Total RNA isolation, RT-PCR, and qRT-PCR analyses ................................9
Statistical analysis ..................................................................................10
Results ..................................................................................................11
Cold-induced responses in zebrafish larvae ..............................................11
Cold-induced changes in microRNA profiles ................................................12
MiRNAs expression profile ......................................................................13
Function annotation for target genes of the cold-dependent miRNAs ............13
Transcriptomic analyses of cold-induced genes ........................................14
Function annotation of the cold-dependent genes of transcriptome ..............15
Regulation of circadian-related miRNAs and their target genes ......................16
Discussion ...............................................................................................18
References ...............................................................................................22
dc.language.isoen
dc.subject冷休克zh_TW
dc.subject微型核醣核酸zh_TW
dc.subjectmicroRNAsen
dc.subjectcold shocken
dc.title冷休克在斑馬魚所引發之微型核醣核酸和轉錄體圖譜變化zh_TW
dc.titleCold shock-induced changes of microRNAs and transcriptome in zebrafishen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫孝芳(H. Sunny Sun),朱家瑩(Chia-Ying Chu),陳示國(Shih-Kuo Chen),陳琮明(Tsung Ming Chen)
dc.subject.keyword冷休克,微型核醣核酸,zh_TW
dc.subject.keywordcold shock,microRNAs,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2013-07-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved