請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61969完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁(Li-Jen Chen) | |
| dc.contributor.author | Yu-Chen Chuang | en |
| dc.contributor.author | 莊于真 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:21:02Z | - |
| dc.date.available | 2016-07-31 | |
| dc.date.copyright | 2013-07-31 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-25 | |
| dc.identifier.citation | 1. Park, J. and Moon, J., Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing. Langmuir, 2006. 22(8): p. 3506-3513.
2. Yu, Y., Zhu, H., Frantz, J. M., Reding, M. E., Chan, K. C., and Ozkan, H. E., Evaporation and Coverage Area of Pesticide Droplets on Hairy and Waxy Leaves. Biosystems Engineering, 2009. 104(3): p. 324-334. 3. Picknett, R. G. and Bexon, R., Evaporation of Sessile or Pendant Drops in Still Air. Journal of Colloid and Interface Science, 1977. 61(2): p. 336-350. 4. Bourgesmonnier, C. and Shanahan, M. E. R., Influence of Evaporation on Contact-Angle. Langmuir, 1995. 11(7): p. 2820-2829. 5. Rowan, S. M., Newton, M. I., and McHale, G., Evaporation of Microdroplets and the Wetting of Solid-Surfaces. Journal of Physical Chemistry, 1995. 99(35): p. 13268-13271. 6. Rowan, S. M., McHale, G., Newton, M. I., and Toorneman, M., Evaporation of Microdroplets of Three Alcohols. Journal of Physical Chemistry B, 1997. 101(8): p. 1265-1267. 7. McHale, G., Rowan, S. M., Newton, M. I., and Banerjee, M. K., Evaporation and the Wetting of a Low-Energy Solid Surface. Journal of Physical Chemistry B, 1998. 102(11): p. 1964-1967. 8. McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I., and Erbil, H. Y., Analysis of Droplet Evaporation on a Superhydrophobic Surface. Langmuir, 2005. 21(24): p. 11053-11060. 9. Kulinich, S. A. and Farzaneh, M., Effect of Contact Angle Hysteresis on Water Droplet Evaporation from Super-Hydrophobic Surfaces. Applied Surface Science, 2009. 255(7): p. 4056-4060. 10. Lopes, M. C. and Bonaccurso, E., Evaporation Control of Sessile Water Drops by Soft Viscoelastic Surfaces. Soft Matter, 2012. 8(30): p. 7875-7881. 11. Reyssat, M., Yeomans, J. M., and Quere, D., Impalement of Fakir Drops. Europhysics Letters, 2008. 81(2): p. 26006. 12. Tsai, P. C., Lammertink, R. G. H., Wessling, M., and Lohse, D., Evaporation-Triggered Wetting Transition for Water Droplets Upon Hydrophobic Microstructures. Physical Review Letters, 2010. 104(11): p. 116102. 13. Cortese, B., D'Amone, S., Manca, M., Viola, I., Cingolani, R., and Gigli, G., Superhydrophobicity Due to the Hierarchical Scale Roughness of Pdms Surfaces. Langmuir, 2008. 24(6): p. 2712-2718. 14. Quere, D., Wetting and Roughness, in Annual Review of Materials Research. 2008. p. 71-99. 15. Yeh, K. Y., Chen, L. J., and Chang, J. Y., Contact Angle Hysteresis on Regular Pillar-Like Hydrophobic Surfaces. Langmuir, 2008. 24(1): p. 245-251. 16. Ishino, C., Reyssat, M., Reyssat, E., Okumura, K., and Quere, D., Wicking within Forests of Micropillars. Europhysics Letters, 2007. 79(5): p. 56005. 17. Ishino, C. and Okumura, K., Wetting Transitions on Textured Hydrophilic Surfaces. European Physical Journal E, 2008. 25(4): p. 415-424. 18. Courbin, L., Denieul, E., Dressaire, E., Roper, M., Ajdari, A., and Stone, H. A., Imbibition by Polygonal Spreading on Microdecorated Surfaces. Nature Materials, 2007. 6(9): p. 661-664. 19. Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water. Industrial and Engineering Chemistry, 1936. 28: p. 988-994. 20. Cassie, A. B. D. and Baxter, S., Wettability of Porous Surfaces. Transactions of the Faraday Society, 1944. 40: p. 0546-0550. 21. Kusumaatmaja, H., Blow, M. L., Dupuis, A., and Yeomans, J. M., The Collapse Transition on Superhydrophobic Surfaces. Europhysics Letters, 2008. 81(3). 22. Erbil, H. Y., Evaporation of Pure Liquid Sessile and Spherical Suspended Drops: A Review. Advances in Colloid and Interface Science, 2012. 170(1-2): p. 67-86. 23. Schoenfeld, F., Graf, K., Hardt, S., and Butt, H.-J., Evaporation Dynamics of Sessile Liquid Drops in Still Air with Constant Contact Radius. International Journal of Heat and Mass Transfer, 2008. 51(13-14): p. 3696-3699. 24. Paxson, A. T. and Varanasi, K. K., Self-Similarity of Contact Line Depinning from Textured Surfaces. Nature Communications, 2013. 4. 25. Anantharaju, N., Panchagnula, M. V., and Vedantam, S., Asymmetric Wetting of Patterned Surfaces Composed of Intrinsically Hysteretic Materials. Langmuir, 2009. 25(13): p. 7410-7415. 26. Vazquez, G., Alvarez, E., and Navaza, J. M., Surface-Tension of Alcohol Plus Water from 20-Degrees-C to 50-Degrees-C. Journal of Chemical and Engineering Data, 1995. 40(3): p. 611-614. 27. Pokroy, B., Kang, S. H., Mahadevan, L., and Aizenberg, J., Self-Organization of a Mesoscale Bristle into Ordered, Hierarchical Helical Assemblies. Science, 2009. 323(5911): p. 237-240. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61969 | - |
| dc.description.abstract | 本篇研究將分為兩部分進行討論:一是關於水滴在軟硬不同的具結構疏水表面上的揮發現象,而二則是針對Cassie impregnating wetting state這個濕潤狀態進行研究討論。
在同樣的基材結構下,改變基材PDMS(聚二甲基矽氧烷)的軟硬程度,從0度視角及45度視角去觀察水滴在其表面上的揮發現象。水滴在具結構疏水表面的揮發機制大體如下:從定接觸半徑模式開始,當接觸角到達後退角時,轉而進入定接觸角模式。當基材愈軟,其後退角就愈小。而緊接著發生在定接觸角模式之後的是濕潤現象的轉變,水滴從原來的Cassie 狀態變成Wenzel狀態,且當基材愈軟時,濕潤轉換的現象發生的愈早。藉由揮發速率在不同揮發模式下的理論模型不同,可以比較實驗及理論上的水滴的體積變化來檢驗是否符合實驗中觀察到的揮發機制。 Cassie impregnating wetting state的觀察研究是利用酒精液滴在不同具結構的PDMS上產生不同的液滴形狀及濕潤現象。由於這個主題研究的數量比較少,所以我們的主要目的是想找出表面結構及Cassie impregnating wetting state所滲出去的範圍大小之間的關係。實驗觀察發現當表面粗糙度愈大時,滲出去的範圍就越大。然而,到目前為止我們仍無法確切知道他們的關係,僅能對Cassie impregnating wetting state有初步的猜測認為其是處於通往完全濕潤前的半穩定狀態。此半穩定狀態是由酒精在結構中的滲透速率及空氣中的揮發速率兩者間互相拉扯平衡下的結果。此外,也比較Cassie Equation 所預測的接觸角及實驗量測在Cassie impregnating wetting state下的接觸角是否能夠吻合以及酒精在具結構表面的揮發情形也有部分討論以幫助進一步了解Cassie impregnating wetting state。 | zh_TW |
| dc.description.abstract | There are two topics discussed in this study: water evaporation on soft patterned surfaces and the observation of the Cassie impregnating wetting state.
First, we demonstrate the evaporation mechanism of water sessile drop on different softness of fixed patterned PDMS (polydimethylsiloxane) substrate and also compare the results from the viewing angle of 0° with that from the viewing angle of 45°. The evaporation mechanism generally starts from the constant contact radius mode and turns into constant contact angle mode when the receding contact angle is reached. The softer the substrate is, the smaller the receding contact angle is. The wetting transition from the Cassie to the Wenzel state is also observed after the constant contact angle mode and the softer substrate will induce an earlier wetting transition due to the softer texture. By comparing the theoretical calculation of evaporation rate in different modes, we can examine whether the expected evaporation mechanism is suitable or not. Second, the Cassie impregnating wetting state is investigated by placing the ethanol drop on different patterned PDMS surfaces. Due to the lack of the knowledge of the Cassie impregnating state, our main purpose is to find out the relationship between the structure of the surfaces and the impregnating region. It is observed that the rougher the substrate is, the larger the impregnating region is. However, so far we cannot specify this phenomenon and its impregnating region. Our preliminary inference is that the Cassie impregnating wetting state is only the metastable state passing to complete wetting and the metastable state is the result of the equilibrium of the imbibition rate and the evaporation rate of ethanol. Besides, the contact angle in the Cassie impregnating wetting state is also examined to see if the Cassie equation can describe and the study of the ethanol drop evaporation on patterned surface is discussed to further understand the Cassie impregnating wetting state. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:21:02Z (GMT). No. of bitstreams: 1 ntu-102-R00524001-1.pdf: 4274355 bytes, checksum: f3ff8f339fee73e85cdf9bb4750afcb8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 5 2.1 Contact Angle and Wetting Behavior 5 2.1.1 Young’s Equation 5 2.1.2 Contact angle for non-ideal surfaces 6 2.1.3 Wetting transition 8 2.2 Evaporation of Sessile Drops 9 2.2.1 Evaporation mechanism 9 2.2.2 Evaporation induced wetting transition 10 2.2.3 Evaporation rate 11 CHAPTER 3. EXPERIMENTAL METHOD 16 3.1 Materials 16 3.2 Experimental Apparatuses 16 3.3 Experimental Procedure 17 3.3.1 Sample preparation 17 3.3.2 Evaporation 18 3.3.3 Observation of the Cassie impregnating wetting state 19 3.3.4 Advancing/receding contact angle measurement 19 CHAPTER 4. RESULTS AND DISCUSSION – EVAPORATION 25 4.1 Constant contact radius mode and constant contact angle mode 26 4.2 Wetting transition during evaporation 29 4.3 The comparison of the evaporation on the substrate with initially collapsed pillars 32 4.4 The variation of droplet volume during evaporation 34 CHAPTER 5. RESULTS AND DISCUSSION – CASSIE IMPREGNATING WETTING 49 5.1 Effect of the structure of the substrates 49 5.2 Effect of the distance from that droplet hits the substrate 51 5.3 The impregnating region in the Cassie impregnating wetting state 52 5.4 The contact angle 57 5.5 Evaporation of ethanol drop on patterned surfaces 60 CHAPTER 6. CONCLUSION 77 REFERENCES 79 | |
| dc.language.iso | en | |
| dc.subject | 疏水表面 | zh_TW |
| dc.subject | 濕潤現象 | zh_TW |
| dc.subject | 揮發 | zh_TW |
| dc.subject | evaporation | en |
| dc.subject | wetting phenomena | en |
| dc.subject | Cassie impregnating wetting state | en |
| dc.title | 液滴在具結構疏水表面上的揮發與濕潤現象 | zh_TW |
| dc.title | Sessile Drop Evaporation and Wetting Phenomena on Patterned Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳炳宏,林析右,蔡瑞瑩 | |
| dc.subject.keyword | 揮發,濕潤現象,疏水表面, | zh_TW |
| dc.subject.keyword | evaporation,wetting phenomena,Cassie impregnating wetting state, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
