請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Yu-Ting Hung | en |
| dc.contributor.author | 洪郁婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:20:45Z | - |
| dc.date.available | 2016-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-25 | |
| dc.identifier.citation | F. Fahy and J. Walker, Fundamentals of noise and vibration: Taylor & Francis,
1988. [2] F. Seitz, The Cosmic Inventor : Reginald Aubrey Fessenden: American Philosophical Society. [3] M. N. Hill and A. R. Robinson, Physical Oceanography: Harvard University Press, 1962. [4] Abramowitz M and D. MW. (2007). Introduction to Microscopy. [5] A. F. Fercher, K. Mengedoht, and W. Werner, 'Eye-Length Measurement By Interferometry With Partially Coherent-Light,' Optics Letters, vol. 13, pp. 186-188, Mar 1988. [6] A. F. Fercher, Ophthalmic interferometry. Germany: Garmisch-Partenkirchen. [7] S. Chiba and N. Tanno, 'Backscattering Optical Heterodyne Tomography,' in 14th Laser Sensing Symposium, 1991. [8] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, et al., 'Optical Coherence Tomography,' Science, vol. 254, pp. 1178-1181, Nov 22 1991. [9] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, 'In-Vivo Optical Coherence Tomography,' American Journal of Ophthalmology, vol. 116, pp. 113-115, Jul 15 1993. [10] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, et al., 'In-Vivo Retinal Imaging By Optical Coherence Tomography,' Optics Letters, vol. 18, pp. 1864-1866, Nov 1 1993. [11] A. F. Fercher and E. Roth, 'Ophthalmic Laser Interferometry,' in SPIE, 1986, pp. 48-51. [12] J.G. Fujimoto, S. D. Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, 'Femtosecond optical ranging in biological systems,' Opt Lett, pp. 150-152, 1986. [13] H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. G. Podoleanu, J. Pedro, et al., 'En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,' Optics Express, vol. 13, pp. 6133-6144, Aug 8 2005. [14] A. F. Fercher, 'Optical coherence tomography - development, principles, applications,' Zeitschrift Fur Medizinische Physik, vol. 20, pp. 251-276, 2010 2010. [15] J. W. Goodman, Introduction To Fourier Optics, 3rd ed.: Englewood Roberts and Company, 2005. [16] R. Novelline, Squire's Fundamentals of Radiology, 5th ed.: Harvard University Press, 1997. [17] M. D. Huber and L. Gerace, 'The size-wise nucleus: nuclear volume control in eukaryotes,' Journal of Cell Biology, vol. 179, pp. 583-584, Nov 19 2007. [18] E. B. Wilson, The karyoplasmic ratio. InThe Cell in Development and Heredity. , Third ed. New York: The Macmillan Company, 1925. [19] D. B. Davidson, 'Computational Electromagnetics for RF and Microwave Engineering,' Second Ed New York: Cambridge University Press, 2005. [20] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third ed.: Artech House, 2005. 79 [21] D. Wolfgang and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications: springer, 2008. [22] J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, et al., 'Optical Biopsy And Imaging Using Optical Coherence Tomography,' Nature Medicine, vol. 1, pp. 970-972, Sep 1995. [23] C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, 'Dispersioninduced multiple signal peak splitting in partial coherence interferometry,' Opt. Commun, vol. 154, pp. 179-185, 1998. [24] M. Kempe, A. Thon, and W. Rudolph, 'Resolution Limits Of Microscopy Through Scattering Layers,' Optics Communications, vol. 110, pp. 492-496, Sep 1 1994. [25] J. Y. Wang, 'Detection Efficiency Of Coherent Optical-Radar,' Applied Optics, vol. 23, pp. 3421-3427, 1984. [26] D. J. Derickson, P. A. Beck, T. L. Bagwell, D. M. Braun, J. E. Fouquet, F. G. Kellert, et al., 'High-Power, Low-Internal-Reflection, Edge Emitting Light-Emitting-Diodes,' Hewlett-Packard Journal, vol. 46, pp. 43-48, Feb 1995. [27] C. F. Lin and B. L. Lee, 'Extremely broadband AlGaAs/GaAs superluminescent diodes,' Applied Physics Letters, vol. 71, pp. 1598-1600, Sep 22 1997. [28] P. J. Poole, M. Davies, M. Dion, Y. Feng, S. Charbonneau, R. D. Goldberg, et al., 'The fabrication of a broad-spectrum light-emitting diode using high-energy ion implantation,' Ieee Photonics Technology Letters, vol. 8, pp. 1145-1147, Sep 1996. [29] H. H. Liu, P. H. Cheng, and J. P. Wang, 'Spatially Coherent White-Light Interferometer Based On A Point Fluorescent Source,' Optics Letters, vol. 18, pp. 678-680, May 1 1993. [30] B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, 'High-Resolution Optical Coherence Tomographic Imaging Using A Mode-Locked Ti-Al2o3 Laser Source,' Optics Letters, vol. 20, pp. 1486-1488, Jul 1 1995. [31] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, et al., 'In vivo endoscopic optical biopsy with optical coherence tomography,' Science, vol. 276, pp. 2037-2039, Jun 27 1997. [32] J. M. Schmitt, S. L. Lee, and K. M. Yung, 'An optical coherence microscope with enhanced resolving power in thick tissue,' Optics Communications, vol. 142, pp. 203-207, Oct 15 1997. [33] J. W. GOODMAN, Statistical Optics. New York,NY: John Wiley and Sons, 1985. [34] J. M. Schmitt and G. Kumar, 'Turbulent nature of refractive-index variations in biological tissue,' Optics Letters, vol. 21, pp. 1310-1312, Aug 15 1996. [35] Y. T. Pan, R. Birngruber, and R. Engelhardt, 'Contrast limits of coherence-gated imaging in scattering media,' Applied Optics, vol. 36, pp. 2979-2983, May 1 1997. [36] J. M. Schmitt and A. Knuttel, 'Model of optical coherence tomography of heterogeneous tissue,' Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 14, pp. 1231-1242, Jun 1997. [37] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, 'Optical Coherence Microscopy In Scattering Media,' Optics Letters, vol. 19, pp. 590-592, Apr 15 1994. [38] J. P. Berenger, 'A Perfectly Matched Layer For The Absorption Of 80 Electromagnetic-Waves,' Journal of Computational Physics, vol. 114, pp. 185-200, Oct 1994. [39] R. N. Bracewell, The Fourier Transform and Its Applications, Third ed.: McGraw-Hill, 2000. [40] E. Hecht, Optics: Addison-Wesley, 2002. [41] D. K. Cheng, Field and Wave Electromagnetics, second ed.: Prentice Hall, 1989. [42] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1983. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61963 | - |
| dc.description.abstract | 一張經由光學同調顯微術(Optical Coherence Tomography 即OCT)而產生的影像隱藏著很多資訊,這些資訊尚無法很完全被分析,一旦我們找出方法可以很好
的解析其中一些資訊,影像來由的樣本也許就能更好的被我們所了解。光學低同 調顯微術其原理簡單來說,是利用麥克森干涉儀(Michelson nterferometer)所得到的干涉圖形來重建掃描樣本的結構。這篇論文所探討的是以生物細胞為光學低同調顯微術的掃描樣本,其目的是在於能由所得到的數據結果運算出生物細胞中的折射率,我們假設生物細胞中某些特定的折射率分布和某一些疾病有關,因而我們希望能找出好的數據解析方式來幫我們精確地算出折射率分佈。 由於生物細胞很複雜,其折射率分布也很不均勻,邊界也非平滑,如果直接 由原始的數據進行研究,其困難度很大,因此我們使用數值方法─時域有限差分 法(Finite-Difference Time-Domain method 即 FDTD )─模擬OCT,先從簡單的長方形介質,均勻的折射率分布著手,考慮到生物細胞邊界粗糙度的影響,我們改變模擬介質的邊界粗糙度,看對於相同的數據分析方式,是否對不同的邊界粗糙程度影響劇烈。我們一開始使用數據中的振幅數值,藉由振幅數值使用菲涅耳方程式(Fresnel equation)來推算折射率,所得結果在各種粗糙度下方均根誤差大概在10的負5 的數量級,我們認為這個數量級在可接受的範圍內。我們也嘗試使用相位差來計算折射率,但方均根誤差沒有使用振幅數值來的精確,大概在10 的負3 數量級左右,即便目前的模擬只是一個很簡單的架構,我們仍認為這篇論文的結果顯示使用時域有限差分法來模擬光學同調顯微術是可行的。 | zh_TW |
| dc.description.abstract | There is a lot of information hidden in an Optical Coherence Tomography (OCT) image.
Most information has not been analyzed completely; if we could design a process to analyze the information contained in the image, we could potentially acquire a better understanding of the sample. The simple principle for OCT is that it uses the figure of the interference from Michelson interferometer to reconstruct the structure of the sample. The discussion for the sample in this thesis is based on the model of a biological cell. We assume that there are some relationships for the disease with the distribution of refractive index. Because of the complexity of the biological cell, such as the inhomogeneous distribution, and the irregular shape, it is very difficult to start to analyze from the original data of OCT. Thus, we use numerical method and Finite-Difference Time-Domain method (FDTD) to simulate the OCT. We start the simulation with the sample of a simple rectangular shape with the homogeneous distribution of refractive index. Considering the effects of the roughness boundary, we control roughness for the sample and apply same analysis process to see if the error changes greatly. We use the amplitude by applying Fresnel equation to calculate the refractive index, and the root mean square error is about . We try another information from the data, phase shift, and the root mean square error is about . In this thesis, the result of the simple model designed by FDTD shows that the final data retrieved from information of amplitude and phase shift is an effective method to determine the refractive index of the unknown sample. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:20:45Z (GMT). No. of bitstreams: 1 ntu-102-R00941020-1.pdf: 2487393 bytes, checksum: 6e8e21d29aeda1c671f4a586aba36c52 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 ............................................................................................................i
誌謝 .................................................................................................................................. ii 中文摘要 ......................................................................................................................... iii ABSTRACT .....................................................................................................................iv CONTENTS .....................................................................................................................vi LIST OF FIGURES ....................................................................................................... viii LIST OF TABLES ......................................................................................................... xiii Chapter 1 Introduction .............................................................................................. 1 1.1 Background of Optical Coherence Tomography ............................................ 1 1.2 Motivation....................................................................................................... 3 1.3 Numerical method .......................................................................................... 4 1.4 Content ............................................................................................................ 5 Chapter 2 Optical Coherence Tomography ............................................................. 7 2.1 Theory basis of OCT ...................................................................................... 7 2.2 Light source .................................................................................................... 8 2.3 Low-coherence interferometer...................................................................... 10 2.4 Scattering of tissue ........................................................................................ 12 2.5 Chapter summary .......................................................................................... 13 Chapter 3 Methods ................................................................................................... 14 3.1 Introduction of the Finite-Difference Time-Domain Method ....................... 14 3.1.1 Central difference ................................................................................ 14 3.1.2 Maxwell’s equation ............................................................................. 16 3.1.3 FDTD algorithm .................................................................................. 21 vii 3.1.4 Courant Limit ...................................................................................... 27 3.1.5 The Scattered-Field / Total-Field technique ........................................ 28 3.1.6 Perfectly Matched Layer Absorbing Boundary Condition .................. 32 3.1.7 Near-to-far-field transformation .......................................................... 37 3.2 Simulated Model ........................................................................................... 40 3.2.1 The condition of problem .................................................................... 40 3.2.2 Inside the simulation model ................................................................ 41 3.2.3 Fresnel Equation .................................................................................. 43 3.2.4 Phase shift ........................................................................................... 46 3.2.5 Data Analysis ...................................................................................... 48 3.3 Validation ...................................................................................................... 53 3.4 Chapter summary .......................................................................................... 55 Chapter 4 Results and Discussion ........................................................................... 57 4.1 One-dimensional problem ............................................................................ 57 4.1.1 Analysis by Fresnel equation .............................................................. 57 4.1.2 Analysis by phase shift ........................................................................ 58 4.2 Two-dimensional problem ............................................................................ 59 4.2.1 Design of roughness interface ............................................................. 59 4.2.2 Analysis smooth interface by Fresnel equation .................................. 61 4.2.3 Analysis smooth interface by phase shift ............................................ 63 4.2.4 Analysis Rough interface by Fresnel equation .................................... 67 Chapter 5 Conclusions and Future Work .............................................................. 76 5.1 Conclusions ................................................................................................ 76 5.2 Future Work .................................................................................................. 76 REFERENCE ................................................................................................................. 78 | |
| dc.language.iso | en | |
| dc.subject | 菲涅耳方程式 | zh_TW |
| dc.subject | 時域有限差分法 | zh_TW |
| dc.subject | 相位差 | zh_TW |
| dc.subject | 光學低同調顯微術 | zh_TW |
| dc.subject | 折射率 | zh_TW |
| dc.subject | Optical Coherence Tomography | en |
| dc.subject | Finite-Difference Time-Domain method | en |
| dc.subject | Fresnel equation | en |
| dc.subject | phase shift | en |
| dc.title | 使用時域有限差分法模擬光學同調掃描術中表面粗糙度的影響 | zh_TW |
| dc.title | FDTD simulation analysis of surface roughness on Optical Coherence Tomography imaging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃升龍,張宏鈞,張世慧 | |
| dc.subject.keyword | 光學低同調顯微術,時域有限差分法,菲涅耳方程式,相位差,折射率, | zh_TW |
| dc.subject.keyword | Optical Coherence Tomography,Finite-Difference Time-Domain method,Fresnel equation,phase shift, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
