請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61939完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋 | |
| dc.contributor.author | Yen-Chen Lin | en |
| dc.contributor.author | 林妍辰 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:19:39Z | - |
| dc.date.available | 2016-07-31 | |
| dc.date.copyright | 2013-07-31 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-26 | |
| dc.identifier.citation | Chapter 1
1. Tadatomo, K.; Okagawa, H.; Ohuchi, Y.; Tsunekawa, T.; Jyouichi, T.; Imada, Y.; Kato, M.; Kudo, H.; Taguchi, T., High Output Power InGaN Ultraviolet Light‐Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy. physica status solidi (a) 2001, 188 (1), 121-125. 2. Yamada, M.,;Mitani, T.; Narukawa, Y.; Shioji, S.; Niki, I.; Sonobe, S.; Deguchi, K.; Sano, M.; Mukai, T., InGaN-based near-ultraviolet and blue light emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Japan. J. Appl. Phys 2002, 41, L1431-3 3. Kim, S.-M.; Park, T.-Y.; Park, S.-J.; Lee, S.-J.; Baek, J. H.; Park, Y. C.; Jung, G. Y., Nanopatterned aluminum nitride template for high efficiency light-emitting diodes. Opt. Express 2009, 17 (17), 14791-14799. 4. Wierer, J. J.; Steigerwald, D. A.; Krames, M. R.; O'Shea, J. J.; Ludowise, M. J.; Christenson, G.; Shen, Y. C.; Lowery, C.; Martin, P. S.; Subramanya, S.; Gotz, W.; Gardner, N. F.; Kern, R. S.; Stockman, S. A., High-power AlGaInN flip-chip light-emitting diodes. Applied Physics Letters 2001, 78 (22), 3379-3381 5. Schnitzer, I.; Yablonovitch, E.; Caneau, C.; Gmitter, T. J., Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Applied Physics Letters 1993, 62 (2), 131-133. 6. Haerle, V.; Hahn, B.; Kaiser, S.; Weimar, A.; Bader, S.; Eberhard, F.; Plossl, A.; Eisert, D., High brightness LEDs for general lighting applications Using the new ThinGaN™-Technology. physica status solidi (a) 2004, 201 (12), 2736-2739. 7. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987, 58 (20), 2059-2062. 8. Wierer, J. J.; Krames, M. R.; Epler, J. E.; Gardner, N. F.; Craford, M. G.; Wendt, J. R.; Simmons, J. A.; Sigalas, M. M., InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Applied Physics Letters 2004, 84 (19), 3885-3887. 9. David, A.; Meier, C.; Sharma, R.; Diana, F. S.; DenBaars, S. P.; Hu, E.; Nakamura, S.; Weisbuch, C.; Benisty, H., Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Applied Physics Letters 2005, 87 (10), 101107-3. 10. Matioli, E.; Weisbuch, C., Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs. Journal of Physics D: Applied Physics 2010, 43 (35), 354005. 11. Wierer, J. J.; David, A.; Megens, M. M., III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photon 2009, 3 (3), 163-169. 12. Matioli, E.; Rangel, E.; Iza, M.; Fleury, B.; Pfaff, N.; Speck, J.; Hu, E.; Weisbuch, C., High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals. Applied Physics Letters 2010, 96 (3), 031108-3. 13. Matioli, E.; Keller, S.; Wu, F.; Choi, Y.-S.; Hu, E.; Speck, J.; Weisbuch, C., Growth of embedded photonic crystals for GaN-based optoelectronic devices. Journal of Applied Physics 2009, 106 (2), 024309-8. 14. Matioli, E.; Fleury, B.; Rangel, E.; Hu, E.; Speck, J.; Weisbuch, C., Measurement of extraction and absorption parameters in GaN-based photonic-crystal light-emitting diodes. Journal of Applied Physics 2010, 107 (5), 053114-6. 15. www.LightEmittingDiodes.org 16. Matioli, E.; Iza, M.; Choi, Y. S.; Wu, F.; Keller, S.; Masui, H.; Hu, E.; Speck, J.; Weisbuch, C., GaN‐based embedded 2D photonic crystal LEDs: Numerical optimization and device characterization. physica status solidi (c) 2009, 6 (S2), S675-S679. 17. David, A.; Fujii, T.; Sharma, R.; McGroddy, K.; Nakamura, S.; DenBaars, S. P.; Hu, E. L.; Weisbuch, C.; Benisty, H., Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution. Applied physics letters 2006, 88 (6), 061124-061124-3. 18. Matioli, E.; Fleury, B.; Rangel, E.; Melo, T.; Hu, E.; Speck, J.; Weisbuch, C., High extraction efficiency GaN-based photonic-crystal light-emitting diodes: Comparison of extraction lengths between surface and embedded photonic crystals. Applied physics express 2010, 3 (3), 2103. 19. Cheng, Y.-W.; Pan, K.-M.; Wang, C.-Y.; Chen, H.-H.; Ke, M.-Y.; Chen, C.-P.; Hsieh, M.-Y.; Wu, H.-M.; Peng, L.-H.; Huang, J., Enhanced light collection of GaN light emitting devices by redirecting the lateral emission using nanorod reflectors. Nanotechnology 2009, 20 (3), 035202. 20. Cheng, Y.-W.; Pan, K.-M.; Chen, L.-Y.; Ke, M.-Y.; Chen, C.-P.; Chen, C.-Y.; Yang, C.; Huang, J. J., Characterizations of GaN-Based LEDs encompassed with self-aligned nanorod arrays of various distribution densities. Electron Device Letters, IEEE 2009, 30 (10), 1060-1062. 21. Cheng, Y.-W.; Wang, S.-C.; Yin, Y.-F.; Su, L.-Y.; Huang, J., GaN-based LEDs surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling. Optics letters 2011, 36 (9), 1611-1613. Chapter 2 1. Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, 2008) 2. Fan, S.; Joannopoulos, J. D., Analysis of guided resonances in photonic crystal slabs. Physical Review B 2002, 65 (23), 235112. 3. Meade, R. D.; Devenyi, A.; Joannopoulos, J. D.; Alerhand, O. L.; Smith, D. A.; Kash, K., Novel applications of photonic band gap materials: Low-loss bends and high Q cavities. Journal of Applied Physics 1994, 75 (9), 4753-4755. 4. Gourley, P. L.; Wendt, J. R.; Vawter, G. A.; Brennan, T. M.; Hammons, B. E., Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors. Applied Physics Letters 1994, 64 (6), 687-689. 5. Fan, S.; Villeneuve, P. R.; Joannopoulos, J. D.; Schubert , E. F.,Proc. SPIE, 1997, 3002, 67. 6. Boroditsky, M.; Coccioli, R.; Yablonovitch, E.,Proc. SPIE ,1998, 3283, 1 7. Yablonovitch, E.; Gmitter, T. J.; Leung, K. M., Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters 1991, 67 (17), 2295-2298. 8. Sozuer, H. S.; Dowling, J. P., Photonic Band Calculations for Woodpile Structures. Journal of Modern Optics 1994, 41 (2), 231-239. 9. Ho, K. M.; Chan, C. T.; Soukoulis, C. M.; Biswas, R.; Sigalas, M., Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Communications 1994, 89 (5), 413-416. 10. Johnson, S. G.; Fan, S.; Villeneuve, P. R.; Joannopoulos, J. D.; Kolodziejski, L. A., Guided modes in photonic crystal slabs. Physical Review B 1999, 60 (8), 5751-5758. Chapter 3 1. Notomi, M., Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B 2000, 62 (16), 10696-10705. 2. Martinez, A.; Marti, J., Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination. Physical Review B 2005, 71 (23), 235115. 3. Hofman, M.; Fabre, N.; Melique, X.; Lippens, D.; Vanbesien, O., Defect assisted subwavelength resolution in III–V semiconductor photonic crystal flat lenses with n=−1. Optics Communications 2010, 283 (6), 1169-1173. 4. Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, 2008) 5. Xiao, S.; Drachev, V. P.; Kildishev, A. V.; Ni, X.; Chettiar, U. K.; Yuan, H.-K.; Shalaev, V. M., Loss-free and active optical negative-index metamaterials. Nature 2010, 466 (7307), 735-738. 6. Burgos, S. P.; de Waele, R.; Polman, A.; Atwater, H. A., A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat Mater 2010, 9 (5), 407-412. 7. Wang, S.-C.; Cheng, Y.-W.; Yin, Y.-F.; Chen, L.-Y.; Su, L.-Y.; Hung, Y.-J.; Huang, J., Interactions of Diffraction Modes Contributed From Surface Photonic Crystals and Nanoholes in a GaN-Based Light-Emitting Diode. J. Lightwave Technol. 2011, 29 (24), 3772-3776. 8. McGroddy, K.; David, A.; Matioli, E.; Iza, M.; Nakamura, S.; DenBaars, S.; Speck, J. S.; Weisbuch, C.; Hu, E. L., Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes. Applied Physics Letters 2008, 93 (10), 103502-3. 9. Lai, C.-F.; Kuo, H.-C.; Yu, P.; Lu, T.-C.; Chao, C.-H.; Yen, H.-H.; Yeh, W.-Y., Highly-directional emission patterns based on near single guided mode extraction from GaN-based ultrathin microcavity light-emitting diodes with photonic crystals. Applied Physics Letters 2010, 97 (1), 013108-3. 10. Wierer, J. J.; David, A.; Megens, M. M., III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photon 2009, 3 (3), 163-169. 11. Busch, K.; von Freymann, G.; Linden, S.; Mingaleev, S. F.; Tkeshelashvili, L.; Wegener, M., Periodic nanostructures for photonics. Physics Reports 2007, 444 (3–6), 101-202. 12. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, J Phys. D , Self-collimation in photonic crystal structures: a new paradigm for applications and device development, 2007, 40, 2635-2651. 13. Luo, C.; Johnson, S. G.; Joannopoulos, J. D., All-angle negative refraction in a three-dimensionally periodic photonic crystal. Applied Physics Letters 2002, 81 (13), 2352-2354. 14. Li, X.-H.; Song, R.; Ee, Y.-K.; Kumnorkaew, P.; Gilchrist, J. F.; Tansu, N., Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios. Photonics Journal, IEEE 2011, 3 (3), 489-499. 15. Cheng, Y.-W.; Wang, S.-C.; Yin, Y.-F.; Su, L.-Y.; Huang, J., GaN-based LEDs surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling. Optics letters 2011, 36 (9), 1611-1613. Chapter 4 1. Keller, S.; Schaake, C.; Fichtenbaum, N.; Neufeld, C.; Wu, Y.; McGroddy, K.; David, A.; DenBaars, S.; Weisbuch, C.; Speck, J., Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells. Journal of applied physics 2006, 100 (5), 054314-054314-7. 2. Wierer, J. J.; David, A.; Megens, M. M., III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nature Photonics 2009, 3 (3), 163-169. 3. Rangel, E.; Matioli, E.; Choi, Y.-S.; Weisbuch, C.; Speck, J. S.; Hu, E. L., Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes. Applied Physics Letters 2011, 98 (8), 081104-081104-3. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61939 | - |
| dc.description.abstract | 在氮化鎵發光二極體中,利用二維光子晶體於作圍繞射光柵以增加出光效率,近年來已經是相當普遍的做法,多數研究為了避免破壞多層量子井,光子晶體僅製作於表面,因此無法將具有高能量的低階模態與光子晶體耦合而萃取出半導體表面。在過去的研究裡,我們曾利用電子束微影技術將光子晶體奈米洞陣列製作於發光二極體發光區外圍,由於光和光子晶體的交互作用與表面光子晶體相比較為強烈,因此出光效率得以提升。在此同時,由於光子晶體週期性的結構,發光場型亦能得到改變。
在本篇論文中,延續過去的實驗,我們在同樣在發光二極體發光區外圍製作週期與奈米洞半徑各為500奈米與200奈米的奈米洞陣列。實驗結果顯示,在我們製作的元件中,在可見光波段具有負折射的現象,這種情況會使得光根據不同偏振方向在不同角度匯聚。對於TE模態來說,當光子與光子晶體交互作用時,同時產生正向和負向的群速度,使得出光方向匯聚在10度的地方。另一方面,光子晶體內空氣柱對於TM模態的光子影響較小,因此對於出光角度的改變並不明顯。在本實驗中,我們利用三維遠場分析,以便更加了解能量的分布,同時也利用等頻率曲線分析,以得到理論上和實驗上的印證。 在接下來的實驗中(第四章),我們在整個元件的表面都製作了奈米洞陣列(週期與半徑分別為400及140奈米),以得到更強的光子晶體與不同模態的交互作用。不同於以往的實驗結果,在這樣的結構中,TM模態相較於TE模態,和光子晶體的繞射作用更為明顯,使得TM模態的出光角度在14度的地方有最大值,而另一個極值則位於32.5度。反觀TE模態,除了位於0度的地方,並沒有特別的峰值,但對比沒有任和結構的元件,在具有奈米洞光子晶體陣列的元件中,發光場型較為發散。在本章中,我們利用模態萃取出光,以及光子晶體造成的繞射,解釋不同模態發光場型的不同。 | zh_TW |
| dc.description.abstract | In recent years, using photonic crystals (PhCs) in GaN light-emitting diodes (LEDs) as optical diffraction grating is a reliable way for improved light extraction. Generally, most researches in related field utilized shallow PhCs fabricated on either a p-type of n-type semiconductor layer in order not to damage the multiple quantum wells (MQWs). Despite reducing the surface defects, the low-order modes, which carry large portion of optical energy, could not couple with PhCs effectively and be extracted. In our previous work, the LEDs with surrounded two-dimensional PhC nanohole arrays were demonstrated. Due to the stronger interaction between emission light and PhCs, the extraction efficiency and directionality are improved.
In this work, the PhC array was fabricated at the mesa edge, with lattice constant of 500 nm and radius of 200 nm. The results show that the electroluminescent (EL) devices with negative refraction in the visible wavelength range. This approach produces polarization-dependent collimation behavior. For TE modes, when photons interact with the PhC, changes between positive and negative group velocities result in the confinement of radiation light to 10°. On the other hand, TM-mode photons are less perturbed by the air hole column, bringing about less effect on extracting angle. This study uses three-dimensional far-field analysis and equi-frequency contour to obtain theoretical and experimental results. Next, in the second part of this article, we fabricated the LED, of which the entire V mesa covered by PhC nanohole array with lattice constant of 400 nm and radius of 140 nm, to obtain the stronger interaction of light with PhC. In this structure, the diffraction by PhCs in TM modes is effective than in TE modes, causing TM polarized light to congregate at 14° (another peak intensity is at 32.5°). Conversely, there is no obvious peak intensity at all angle except 0°. Compared with conventional planar LED, the radiation profile is wider. In this chapter, we introduce two mechanisms, vertically guided mode extraction and laterally propagating light diffraction by PhCs, to explain the difference of radiation with polarization. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:19:39Z (GMT). No. of bitstreams: 1 ntu-102-R00941037-1.pdf: 3097945 bytes, checksum: 41609ae0c4da2ee79809335b4038bc2a (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 I
Acknowledgement II 摘要 III Abstract IV Contents VI List of Figures VIII Chapter 1 Introduction ................................... 1 1.1 Introduction to photonic crystal light emitting diode ................... 1 1.2 Literature review of PhC LEDs ................................... 4 1.2.1 Basic of light extraction by PhC gratings ................................... 4 1.2.2 AlGaN layer for vertical mode control ................................... 7 1.2.3 Embedded PhC LED ................................... 8 1.3 The method of measurement................................... 10 1.4 Research motivation...................................11 1.5 References...................................13 Chapter 2 Fabrication of LEDs ................................... 17 2.1 InGaN/GaN multiple quantum well LED ................................... 17 2.2 Designing photonic crystal patterns ...................................18 2.2.1 Two-dimensional photonic crystals ................................... 18 2.2.2 Photonic-crystal slabs ................................... 19 2.2.3 Designing photonic crystal patterns ................................... 20 2.3 Fabrication process of planar LED ...................................21 2.4 Fabrication process of PhC LED ................................... 23 2.5 References................................... 25 Chapter 3 Negative Refraction in LEDs with Surrounded PhC Nanohole Array 27 3.1 Preface ................................... 27 3.2 Details of devices fabrication ................................... 28 3.3 Results and discussions................................... 29 3.3.1 Radiations profiles and band diagrams ................................... 29 3.3.2 Equi-frequency contour (EFC) method ................................... 33 3.4 Conclusion ................................... 37 3.5 References ................................... 38 Chapter 4 Extraction Properties of Nanohole Array LEDs ................................... 41 4.1 Preface................................... 41 4.2 Details of devices fabrication ................................... 41 4.3 Results and discussions................................... 43 4.3.1 Electrical properties and light output............................................. 43 4.3.2 Spontaneous emission control ....................................................... 44 4.3.3 The two mechanisms of light extraction........................................ 46 4.4 Conclusion ................................... 53 4.5 References ................................... 54 Chapter 5 Conclusion ................................... 55 | |
| dc.language.iso | en | |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 奈米洞陣列 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | GaN | en |
| dc.subject | light-emitting diode | en |
| dc.subject | Nanohole array | en |
| dc.subject | Photonic crystal | en |
| dc.title | 光子晶體奈米洞陣列對發光二極體出光特性之影響 | zh_TW |
| dc.title | Effects of Photonic Crystal Nanohole Arrays on Light Output Properties of LEDs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,吳育任,吳肇欣 | |
| dc.subject.keyword | 光子晶體,氮化鎵,奈米洞陣列,發光二極體, | zh_TW |
| dc.subject.keyword | Photonic crystal,GaN,Nanohole array,light-emitting diode, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
