Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61925
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯(Louis Ge)
dc.contributor.authorMeng-Heng Chiangen
dc.contributor.author江孟衡zh_TW
dc.date.accessioned2021-06-16T13:19:01Z-
dc.date.available2014-08-06
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-07-26
dc.identifier.citation1. Andrew, D. C. A., & Martin, G. R. (2000). 'Criteria for liquefaction of silty soils,' Proc., 12th World Conf. on Eqrthquake Engineering, No. 0312.
2. Beroya, M. A. A., Aydin, A., & Katzenbach, R. (2009). 'Insight into the effects of clay mineralogy on the cyclic behavior of silt-clay mixtures,' Engineering Geology, 106(3-4), 154-162.
3. Bol, E., Onalp, A., Arel, E., Sert, S., & Ozocak, A. (2010). 'Liquefaction of silts: the Adapazari criteria,' Bulletin of Earthquake Engineering, 8(4), 859-873.
4. Boulanger, Ross W., & Idriss, I. M. (2006). 'Liquefaction susceptibility criteria for silts and clays,' Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413-1426.
5. Boulanger, Ross W., & Idriss, I. M. (2007). 'Evaluation of cyclic softening in silts and clays,' Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 641-652.
6. Bray, Jonathan D., & Sancio, Rodolfo B. (2006). 'Assessment of the Liquefaction Susceptibility of Fine-Grained Soils,' Journal of Geotechnical and Geoenvironmental Engineering, 137(4), 451-452.
7. Chien, L. K., Oh, Y. N., & Chang, C. H. (2002). 'Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil,' Canadian Geotechnical Journal, 39(1), 254-265.
8. Chung, Kin Y. C., & Wong, I. H. (1982). 'Liquefaction potential of soils with plastic fines,' Soil Dynamics and Earthquake Engineering, 887-897.
9. EI Hosri, M. S., Briarez, H., & Hicher, P. Y. (1984). 'Liquefaction characteristics of silty clay,' Proc., 8th World Conf. on Eqrthquake Engineering., Prentice-Hall, Englewood Cliffs, N. J., 3(277-284).
10. Guo, T., & Prakash, S. (1999). 'Liquefaction of silts and silt-clay mixtures,' Journal of Geotechnical and Geoenvironmental Engineering, 125(8), 706-710.
11. Hyde, A. F. L., Higuchi, T., & Yasuhara, K. (2006). 'Liquefaction, cyclic mobility, and failure of silt,' Journal of Geotechnical and Geoenvironmental Engineering, 132(6), 716-735.
12. Koester, J. P. (1992a). 'The influence of test procedure on correlation of Atterberg limits with liquefaction in fine-grained soils,' Geotechnical Testing Journal, 15(4), 352-361.
13. Koester, J. P. (1992b). 'Cyclic strength and pore pressure generation characteristics of fine-grained soils,' Ph.D. Thesis, University of Colorado, Denver.
14. Koester, J. P. (1993). 'Effects of fines type and content on liquefaction potential of low-to-medium plasticity fine-grained soils,' Proc. 1993 Nat. Earthquake Conf., Central United States Earthquake Consortium, Memphis, Tenn., 1, 67-75.
15. Lee, K.L., & Fitton, J. A. (1969). 'Factors affecting the cyclic loading strength of soils,' Vibration Effects of Earthquakes on soils and foundations, ASTM STP450, American Society for Testing and Materials, 71-95.
16. Marcuson, W. F., III. (1978). 'Definition of term related to liquefaction,' Journal of Geotechnical Engineering, ASCE, 103, No GT6,565-588.
17. O-hara, S. , Kotsubo, S., & Yamamoto, T. (1985). 'Pore pressure developed in saturated sand subjected to cyclic shear stress under partial-drainage conditions,' Japanese. Social of Soil Mechanics and Foundation Engineerng, 25, No.2, 45-56.
18. Peacock, W. H., & Seed, H. B. (1968). 'Sand liquefaction under cyclic loading simple shear conditions,' Journal of Soil Mechanics and Foundation Division, ASCE, 94, No.SM3, 689-708.
19. Prakash, S., & Sandoval, J. A. (1992). 'Liquefaction of low plasticity silts,' Soil Dynamics and Earthquake Engineering, 11( 7), 373-379.
20. Puri, V. K. (1984). 'Liquefaction behavior and dynamic properties of loessial (silty) soils,' Ph.D. Thesis, University of Missouri-Rolla, Missouri.
21. Puri, V. K. (1990). 'Liquefaction aspects of loessial soils,' Proc., 4th U.S. Nat. Conf. on Earthquake Engineering Research Inst., El Cerito, Calif., 3, 755-762.
22. Romero, S. (1995). 'The behavior of silt as clay content is increased,' MS thesis, Univ. of California, Davis, Calif.
23. Sandoval, J. . (1989). 'Liquefaction and settlement characteristics of silt soils,' Ph.D. Thesis, University of Missouri-Rolla, Mo.
24. Seed, H. B. (1979). 'Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes,' Journal of the Geotechnical Engineering Division, Vol 105, No. GT2, pp201-255.
25. Seed, H. B., & Idriss, I. M. (1982). 'Ground motions and soil liquefaction during earthquakes,' EERI Monograph.
26. Seed, H. Bolton., Tokimatsu, K., Harder, L. F., & Chung, Riley M. (1985). 'Influence of SPT procedures in soil liquefaction resistance evaluations,' Journal of Geotechnical and Engineering, ASCE, 111, No. 12, 1425-1444.
27. Thevanayagam, S., & Martin, G. R. (2002). 'Liquefaction in silty soils - screening and remediation issues,' Soil Dynamics and Earthquake Engineering, 22(9-12), 1035-1042.
28. Troncoso, J. H. (1990). 'Failure risks of abandoned tailings dams,' proc. Int. Sym. on Safety and Rehabilitation of Tailings Dams, International Commission on Large Dams, Paris(82-89).
29. Troncoso, J. H., & Verdugo. (1985). 'Silt content and dynamic behavior of tailings sands,' Proc. 11, ICSMFE, San Francisco, 3(131-1314).
30. Umehara, Y., Zen, K., & Hamada, K. (1985). 'Evaluation of soil liquefaction potentials in partially drained conditions,' Soil and Foundations, 25, No.2, 57-72.
31. Wang, Shuying, Luna, Ronaldo, & Stephenson, Richard W. (2011). 'A slurry consolidation approach to reconstitute low-plasticity silt specimens for laboratory triaxial testing,' Geotechnical Testing Journal, 34(4), 288-296.
32. Wong, R. T., Seed, H. B., & Chan, C. K. (1975). 'Cyclic loading liquefaction of gravelly soils,' Journal of the Geotechnical Engineering Division 101, No.GT6, 571-583.
33. Yoshimi, Y., & Oh-oka, H. (1978). 'Influence of degree of shear stress reversal on the liquefaction potential of saturated sands,' Soil and Foundations, 15, No.3, 27-40.
34. 楊沂恩 (1984),「細料含量及塑性指數對砂土液化影響之研究」,國立成功大學土木工程學研究所,碩士論文。
35. 陳守德 (1986),「微量細料對砂性土壤液化潛能之影響」,國立台灣大學土木工程學研究所,碩士論文。
36. 夏啟明 (1992),「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程學研究所,碩士論文。
37. 陳嘉裕 (1999),「細粒料含量對砂土液化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文。
38. 詹松儒 (2000),「排水狀況對台北盆地粉土質砂土液化特性行為之研究」,國立台灣大學土木工學程研究所,博士論文。
39. 陳界文 (2002),「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程學研究所,碩士論文。
40. 孫家雯 (2003),「砂土細料界定對液化強度之影響」,國立台灣大學土木工程學研究所,碩士論文。
41. 余定縣 (2004),「貓羅溪高細粒料土壤抗液化強度之研究」,國立台灣大學土木工程學研究所,碩士論文。
42. 葉俊麟 (2005),「高細粒料土壤動力三軸試驗試體孔隙水壓激發之探討」,國立台灣大學土木工程學研究所,碩士論文。
43. 林智偉 (2006),「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程學研究所,碩士論文。
44. 李維峰、石原研而、陳俊吉、陳景文、張浼珣 (2012),「台灣低塑性粉土工程性質研究」,地工技術,第133期,pp.7~18。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61925-
dc.description.abstract影響土壤液化之因素包括土壤密度、有效圍壓、過壓密比、塑性、礦物組成、顆粒形狀以及試體準備方法等,本研究係以CKC動力三軸儀,採完全通過兩百號篩之石英粉及鐵立庫地區之細粒料為土樣,以濕搗法重模試體,將試體控制在相同圍壓下,以乾密度、塑性指數以及動態試驗之加載速率為控制變因,進行動力三軸試驗,探討各變數對於低塑性粉土液化之影響。
根據本研究試驗結果顯示,當石英粉試體於相同圍壓下,以乾密度為控制變因,以相同之加載速率進行動力三軸試驗,可發現土壤之抗液化強度隨乾密度上升而增加,即土壤愈緊密,其抗液化強度亦愈高。
根據不同塑性指數之鐵立庫細粒料土壤之動力三軸試驗結果,可得在相同圍壓下,以相同之加載速率進行試驗,土壤之抗液化強度呈隨塑性指數增加而有下降之趨勢。此外,土壤之塑性指數不同,其液化之行為亦不同。當土壤之塑性指數較低時,於反覆應力作用下,試體會先達有效應力為零,即發生初始液化,爾後才達到5% 雙振福軸向應變。當土壤之塑性指數較高時,於反覆應力作用下,試體會先達到5% 雙振幅軸向應變,爾後有效應力才下降至零,甚至不會發生初始液化。
本研究亦針對加載速率對於土壤抗液化強度之影響進行探討,由試驗結果可得,當試體為透水性較高之石英粉時,於相同之反覆應力比下,不論加載速率之快慢,土壤之抗液化強度皆相近,且孔隙水壓激發情形亦相近,即加載速率對透水性較高之石英粉之抗液化強度較無影響。當試體為透水性低之低塑性粉土時,於相同之反覆應力比下,土壤之抗液化強度會隨加載速率下降而降低,且孔隙水壓激發情形亦不同,即加載速率會影響低透水性之低塑性粉土之抗液化強度。
zh_TW
dc.description.abstractThere are many factors affecting soil liquefaction including soil density, confining pressure, over-consolidation ratio, plasticity, mineralogy, and particle shape, etc. This research examined liquefaction behavior of non-plastic and low-plasticity silts by a series of cyclic triaxial tests. Materials used in this study were quartz powder and Tieliku silt, which both pass #200 sieve (0.074mm), Specimens were prepared by moist tamping. All tests were carried out under the same initial confining pressure with different dry densities, plasticity indexes and loading rates.
From the test results, it can be found that the liquefaction resistance of the quartz powder increased as its dry density increased. The results of Tieliku silts show that the liquefaction resistance decreased as the plasticity index increased under the same initial confining pressure. In addition, silts with different plasticity indexes lead to different liquefaction behaviors. For the specimens with lower plasticity index, specimens first reached the state of zero effective stress, indicating the occurring of the initial liquefaction. It was then followed by the state of 5% double amplitude axial strain during undrained cyclic loading. On the other hand, for the specimens with higher plasticity index, specimens reached 5% double amplitude axial strain first, and then reached the state of zero effective stress or not reached the state at all.
This study also investigated the effect of loading rate on liquefaction resistance. According to the test results, for quartz powder with higher permeability, whether the loading rate was fast or slow, its resistance was almost the same and the pore water pressure generation within the specimen was in a similar pattern. It indicates that the liquefaction resistance of quartz powder with higher permeability will not be affected by loading rate. However, for low plasticity silts with lower permeability, the liquefaction resistance decreased as the loading rate decreased and the pore water pressure generation in the specimen followed different patterns. It suggests that the liquefaction resistance of low plasticity silts with lower permeability will be affected by loading rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:19:01Z (GMT). No. of bitstreams: 1
ntu-102-R00521118-1.pdf: 5788146 bytes, checksum: 47e6db8b1e2a20a7c4adb34262eb088b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents論文口試委員審定書 I
誌謝 II
摘要 III
Abtract IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 動機與目的 1
1-2 研究方法 2
1-3 研究架構 2
第二章 文獻回顧 3
2-1 液化現象與定義 3
2-2 評估含細顆粒土壤液化之準則 4
2-3 相對密度對液化強度之影響 5
2-4 反覆應力作用頻率對液化判定之影響 6
2-5 細粒料含量對液化潛能之影響 7
2-6 塑性指數對液化強度之影響 9
2-7 小結 12
第三章 試驗內容 27
3-1 試驗土樣 27
3-2 試驗設備 27
3-3 試驗步驟 29
3-3-1 儀器校正 29
3-3-2 重模試體準備與製作 29
3-3-3 試體飽和 31
3-3-4 試體壓密 32
3-3-5 滲透性試驗 32
3-3-6 液化強度試驗 32
3-3-7 試驗資料分析 33
第四章 試驗結果 40
4-1 土壤基本物理特性試驗結果 40
4-1-1 土壤粒徑大小及形狀分析 40
4-1-2 土粒比重及相對密度 41
4-1-3 阿太保限度 42
4-1-4 透水性 42
4-2 動三軸試驗結果 42
4-2-1 液化時間判定 42
4-2-2 動態試驗各參數之定義 43
4-2-3 純石英粉試體之動三軸試驗結果 44
4-3-2 石英粉與高嶺土混合試體之動三軸試驗結果 45
4-3-3 鐵立庫細粒料土壤之動三軸試驗結果 45
第五章 分析與討論 64
5-1 無塑性粉土之動態強度 64
5-1-1 乾密度對無塑性粉土抗液化強度之影響 64
5-1-2 無塑性粉土之液化行為 65
5-2 塑性性質對細粒料土壤抗液化強度之影響 66
5-2-1 塑性指數對土壤抗液化強度之影響 66
5-2-2 塑性指數對細粒料土壤液化行為之影響 67
5-3 細粒料土壤之動態特性 68
5-3-1 試體變形行為 68
5-3-2 孔隙水壓與有效應力之變化 69
5-3-3 應力與應變之變化 70
5-4 加載速率對土壤抗液化強度之影響 71
5-4-1 加載速率對石英粉動態強度之影響 71
5-4-2 加載速率對低塑性粉土動態強度之影響 72
第六章 結論與建議 92
6-1 結論 92
6-2 建議 94
參考文獻 95
dc.language.isozh-TW
dc.subject土壤液化zh_TW
dc.subject加載速率zh_TW
dc.subject動力三軸試驗zh_TW
dc.subject低塑性粉土zh_TW
dc.subjectsoil liquefactionen
dc.subjectcyclic triaxial testen
dc.subjectlow plasticity siltsen
dc.subjectloading rateen
dc.title低塑性細粒料土壤抗液化強度之研究zh_TW
dc.titleLiquefaction Resistance of Low Plasticity Fine-Grained Soilen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊鴻(Jin-Hung Hwang),林志平(Chih-Ping Lin),郭安妮(Annie On-Lei Kwok)
dc.subject.keyword土壤液化,低塑性粉土,動力三軸試驗,加載速率,zh_TW
dc.subject.keywordsoil liquefaction,low plasticity silts,cyclic triaxial test,loading rate,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2013-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved