請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(C. C. Yang) | |
| dc.contributor.author | Wei-Fang Chen | en |
| dc.contributor.author | 陳維芳 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:18:14Z | - |
| dc.date.available | 2018-08-08 | |
| dc.date.copyright | 2013-08-08 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-26 | |
| dc.identifier.citation | [1.1] C. W. Bunn, Proc. Phys. Soc. London 47, 836 (1935).
[1.2] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966). [1.3] E. Mollwo, Z. Angew. Phys. 6, 257 (1954). [1.4] G. Galli, and J. E. Coker, Appl. Phys. Lett. 16, 439 (1970). [1.5] D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960). [1.6] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, Phys. Rev. B 60, 2340 (1999). [1.7] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, J. Cryst. Growth 260, 166 (2004). [1.8] J.-M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, J. Cryst. Growth 207, 30 (1999). [1.9] D. C. Look, Mater. Sci. Eng., B 80, 381 (2001). [1.10] D. M. Bagnall1, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997). [1.11] J. H. Lim, C. K. Kong, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, Adv. Mater. 18, 2720 (2006). [1.12] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001). [1.13] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455( 2005). [1.14] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004). [1.15] C. Klingshirn, Phys. Status Solidi B 244 3027 (2007). [1.16] U. Rossler, Landolt-Bornstein, New Series III/41B (1999). [1.17] C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, J. M. and M. Geurts, Springer (2010). [1.18] C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007) [1.19] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Jpn. J. Appl. Phys. 36, L1078 (1997). [1.20] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, Thin Solid Films 260, 19 (1995). [1.21] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, Thin Solid Films 427, 401 (2003). [1.22] Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, J. Cryst. Growth 259, 130 (2003). [1.23] B.C. Jiao, X.D. Zhang, C.C. Wei, J. Sun, Q. Huang, Y. Zhao, Thin Solid Films, 520, 1323 (2011) [1.24] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett. 77, 3761 (2000). [1.25] Hu J and Gordon R G, Solar Cells 30 437 (1991). [1.26] M. Olvera, S. Tirado-Guerra, A. Maldonado, L. CastaCeda, Sol. Energy Mater. Sol. Cells 90, 2346 (2006). [1.27] Huihu Wang, Seonghoon Baek, Jaejin Song, Jonghyuck Lee and Sangwoo Lim Nanotechnology. 19, 075607 (2008). [1.28] Andres-Verges M, Mifsud A and Serna C J, J. Chem. Soc. Faraday Trans. 86 959 (1990) [1.29] Vayssieres L, Keis K and Lindquist S E, J. Phys. Chem. B 105, 3350 (2001) [1.30] Schmidt-Mende L and MacManus-Driscoll J L, Mater. Today 10, 40 (2007) [1.31] Vayssieres L, Keis K, Lindquist S E and Hagfeldt A, J. Phys. Chem. B 105, 3350 (2001) [1.32] Vayssieres L, Adv. Mater. 15, 464 (2003) [1.33] Sun Y, Riley D J and Ashfold M N R, J. Phys. Chem. B 110, 15186, (2006) [1.34] Robert Erdelyi, Takahiro Nagata, David J. Rogers, Ferechteh H. Teherani, Zsolt E. Horvath, Zoltan Labadi, Zsofia Baji, Yutaka Wakayama, and Janos Volk, Cryst. Growth Des. 11, 2515 (2011) [1.35] Tian Z R, Voigt J A, Liu J, Mckenzie B, Mcdermott M J, Rodriguez M A, Konishi H and Xu H, Nat. Mater. 2, 821 (2003) [1.36] Won Woo Lee, Jaeseok Yi, Seong Been Kim, Yoon-Ho Kim, Hong-Gyu Park, and Won Il Park “Morphology-Controlled Three-Dimensional Nanoarchitectures Produced by Exploiting Vertical and In-Plane Crystallographic Orientations in Hydrothermal ZnO Crystals” Cryst. Growth Des. 11, 4927 (2011) [1.37] J. J. Dong, X. W. Zhang, Z. G. Yin, S. G. Zhang, J. X. Wang, H. R. Tan, Y. Gao, F. T. Si, and H. L. Gao “Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template” ACS Appl. Mater. Interfaces, 3, 4388 (2011) [1.38] M. A. Herman, and H. Sitter, “Molecular Beam Epitaxy fundamentals and Current Status,” Springer (2006) [1.39] R. Triboulet, and Jacques Perrie`re Progress in Crystal Growth and Characterization of Materials 47 65e138 (2003) [1.40] R. Triboulet, and Jacques Perrie`re Progress in Crystal Growth and Characterization of Materials 47 65e138 (2003) [1.41] S. Heinze, A. Krtschil, J. Blasing, T. Hempel, P. Veit, A. Dadgar, J. Christen, and A. Krost, J. Cryst. Growth 308, 170 (2007). [1.42] T. Ive, T. Ben-Yaacov, C.G. Van de Walle, U.K. Mishra, S.P. Den Baars, and J.S. Speck, J. Cryst. Growth 310, 3407 (2008). [1.43] T. Ive, T. Ben-Yaacov, A. Murai, H. Asamizu, C. G. Van de Walle, U. Mishra, S. P. DenBaars, and J. S. Speck, Phys. Stat. Soli. c 5 3091(2008). [1.44] Sorab K. Ghandhi, Robert J. Field, and James R. Shealy, Appl. Phys. Lett. 37, 449 (1980). [1.45] C.K. Lau, S.K. Tiku, and K.M. Lakin, J. Electrochem. Soc. 127 1843 (1980). [1.46] B. Hahn, G. Heindel, E. Pschorr-Schoberer, and W. Gebhardt, Semicond. Sci. Technol. 13, 788 (1998). [1.47] T. Maruyama, and J. Shionoya, J. Mater. Sci. Lett. 11, 170 (1992). [1.48] R. Triboulet, and Jacques Perrie`re Progress in Crystal Growth and Characterization of Materials 47 65e138 (2003) [1.49] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005) [1.50] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede1, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar, J. Appl. Phys. 93, 126 (2003). [1.51] A. Y. Azarov, T. C. Zhang, B. G. Svensson, and A. Y. Kuznetsov, Appl. Phys. Lett. 99, 111903 (2011). [1.52] R. Zhang, P. Chen, Y. Zhang, X. Ma, and D. Yang, J. Cryst. Growth 312, 1908 (2010). [1.53] H. S. Kang, S. H. Lim, J. W. Kim, H. W. Chang, G. H. Kim, J. H. Kim, S. Y. Lee, Y. Li, J. S. Lee, J. K. Lee, M. A. Nastasi, S. A. Crooker, and Q. X. Jia, J. Cryst. Growth 287, 70 (2006). [1.54] S. Sadofev, P. Schafer, Y. H. Fan, S. Blumstengel, F. Henneberger, D. Schulz, and D. Klimm, Appl. Phys. Lett. 91, 201923 (2007). [1.55] S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, and F. Henneberger, Appl. Phys. Lett. 89, 201907 (2006). [1.56] J. J. Chen, S. Jang, F. Rena, S. Rawal, Y. Li, H. S. Kim, D. P. Norton, S. J. Pearton, and A. Osinsky, Appl. Surf. Sci. 253, 746 (2006). [1.57] X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and A. Dabiran, Appl. Phys. Lett. 89, 151909 (2006). [1.58] L. Li, Z. Yang, Z. Zuo, J. H. Lim, and J. L. Liu, Appl. Surf. Sci. 256, 4734 (2010). [1.59] L. Li, Z. Yang, Z. Zuo, J. Y. Kong, and J. L. Liu, J. Vac. Sci. Technol. B, 28, C3D13 (2010). [1.60] T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinumac, Appl. Phys. Lett. 77, 1632 (2000). [1.61] S. Sadofev, S. Kalusniak, J. Puls, P. Schafer, S. Blumstengel, and F. Henneberger, Appl. Phys. Lett. 91, 231103 (2007). [1.62] S. Kalusniak, S. Sadofev, J. Puls, and F. Henneberger, Laser & Photon. Rev. 3, 233 (2008). [1.63] S. Blumstengel, S. Sadofev, H. Kirmse, and F. Henneberger, Appl. Phys. Lett. 98, 031907 (2011). [1.64] A. V. Thompson, C. Boutwell, J. W. Mares, W. V. Schoenfeld, A. Osinsky, B. Hertog, J. Q. Xie, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett. 91, 201921 (2007). [1.65] W. Lim, D. P. Norton, S. J. Pearton, X. J. Wang, W. M. Chen, I. A. Buyanova, A. Osinsky, J. W. Dong, B. Hertog, A. V. Thompson, W. V. Schoenfeld, Y. L. Wang, and F. Ren, Appl. Phys. Lett. 92, 032103 (2008). [1.66] I. A. Buyanova, X. J. Wang, G. Pozina, W. M. Chen, W. Lim, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and B. Hertog, Appl. Phys. Lett. 92, 261912 (2008). [1.67] W. F. Yang, B. Liu, R. Chen, L. M. Wong, S. J. Wang, and H. D. Sun, Appl. Phys. Lett. 97, 061911 (2010). [1.68] W. F. Yang, L. M. Wong, S. J. Wang, H. D. Sun, C. H. Ge, A. Y. S. Lee, and H. Gong, Appl. Phys. Lett. 98, 121903 (2011). [1.69] K. Yamamoto, M. Adachi, T. Tawara, H. Gotoh, A. Nakamura, and J. Temmyo, J. Cryst. Growth 312, 1496 (2010). [1.70] Z. Q. Fang, B. Claflin, D. C. Look, L. L. Kerr, and X. Li, J. Appl. Phys. 102, 013528 (2007). [1.71] F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett. 88, 052106 (2006). [1.72] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett. 87, 152101 (2005). [1.73] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, Adv. Mater. 18, 2720 (2006). [1.74] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, and C. L. Zhang, Appl. Phys. Lett. 88, 092101 (2006). [1.75] L. Li, Z. Yang, J. Y. Kong, and J. L. Liu, Appl. Phys. Lett. 95, 232117 (2009). [1.76] K. Yamamoto, A. Nakamura, J. Temmyo, E. Munoz, and A. Hierro, IEEE Photon. Technol. Lett. 23, 1052 (2011). [1.77] S. P. Chang, R. W. Chuang, S. J. Chang, Y. Z. Chiou, and C. Y. Lu, Thin Solid Films, 517, 5054 (2009). [1.78] J. W. Mares, M. Falanga, A. V. Thompson, A. Osinsky, J. Q. Xie, B. Hertog, A. Dabiran, P. P. Chow, S. Karpov, and W. V. Schoenfeld, J. Appl. Phys. 104, 093107 (2008). [2.1] Yaguang Wei, Wenzhuo Wu, Rui Guo, Dajun Yuan, Suman Das, and Zhong Lin Wang, Nano Lett. 10, 3414 (2010) [2.2] H. L. Zhou, P. G. Shao, S. J. Chua, J. A. van Kan, A. A. Bettiol, T. Osipowicz, K. F. Ooi, G. K. L. Goh, and F. Watt, Crystal Growth & Design 8, 4445 (2008) [2.3] J. J. Dong, X. W. Zhang, Z. G. Yin, S. G. Zhang, J. X. Wang, H. R. Tan, Y. Gao, F. T. Si, and H. L. Gao, ACS Appl. Mater. Interfaces 3, 4388 (2011). [2.3] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Lieber, Nano Lett. 4, 1975 (2004). [2.4] G. Chen, L. Zhang, Y. Zhu, G. Fei, L. Li, C. Mo, and Y. Mao, Appl. Phys. Lett. 75, 2455 (1999). [2.5] M. He, P. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, and L. Salamanca-Riba, J. Cryst. Growth 231, 357 (2001). [3.1] W. L. Park and G. C. Yi, Adv. Mater. 16, 87 (2004). [3.2] X. Y. Chen, A. M. C. Ng, F. Fang, A. B. Djurisˇic’, W. K. Chan, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, J. Electrochem. Soc.157, H308 (2010). [3.3] Xinyi Chen, Alan Man Ching Ng , Fang Fang , Yip Hang Ng , Aleksandra B Djurišić et al. J. Appl. Phys. 110, 094513 (2011) [3.4] Q. Qin, L. W. Guo, Z. T. Zhou, H. Chen, X. L. Du, Z. X. Mei, J. F. Jia, Q. K. Xue, and J. M. Zhou, Chin. Phys. Lett. 22, 2298 (2005). [3.5] A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurisˇic’, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, Nanotechnology 20, 445201 (2009). [3.6] M. K. Wu, Y. T. Shih, W. C. Li, H. C. Chen, M. J. Chen, H. Kuan, J. R. Yang, and M. Shiojiri, IEEE Photon. Technol. Lett. 20, 1772 (2008). [3.7] Zhang, Lichun; Li, Qingshan; Shang, Liang; Zhang, Zhongjun; Huang, Ruizhi; Zhao, Fengzhou, J. Phys. D: Appl. Phys. 45 485103 (2012) [3.8] H.C. Jeon, S. J. Lee, T. W. Kang, S. H. Park, Physica B 407 1550–1552 (2012) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61908 | - |
| dc.description.abstract | 在本論文中,我們實現了一種能有效控制並成長出規則排列氧化鋅奈米柱的方法。我們結合奈米壓印技術以氮化矽薄膜為遮罩製作圖案氮化鎵基板,然後使用水浴法成長規則排列之氧化鋅奈米柱。在本研究中,我們改變水浴法成長條件,包含溶液濃度、成長溫度、成長時間以及基板圖案的成長區域面積,並歸納出水浴法在不同條件下的成長機制。我們發現在不同水浴法的成長條件下,規則排列氧化鋅奈米柱的型態變化幅度相當大。為了提升氧化鋅奈米柱的材料品質以及光學特性,我們適量摻雜鎵元素成分形成n型氧化鋅(電子濃度2.57×10^19 每立方公分),並調變熱退火的條件。我們也利用光激發螢光量測以及穿隧式電子顯微鏡來分析氧化鋅奈米柱的光學特性以及材料品質。我們發現當氧化鋅奈米柱適量摻雜鎵成分並於300℃的氧氣環境下熱退火一個小時,能夠有效改善氧化鋅奈米柱的光學特性。
我們將氧化鋅奈米柱應用於發光二極體之製作,我們製作出n型氧化鋅奈米柱/p型氮化鎵的發光二極體以及n型氧化鋅奈米柱/氧化鎘鋅/氧化鋅三層量子井/p型氮化鎵發光二極體。我們發現這兩種發光二極體元件在施加順向偏壓以及逆向偏壓時均會發光,並進一步研究不同偏壓下的發光機制。由於n型氧化鋅奈米柱以及p型氮化鎵的能帶偏移相當大,加上兩者材料不同,容易在介面處形成缺陷能帶,使得在逆向偏壓時載子容易藉由缺陷能帶穿隧產生電流。比較這兩種發光二極體,n型氧化鋅奈米柱/氧化鎘鋅/氧化鋅三層量子井/p型氮化鎵發光二極體所量測到電激發光的發光強度在逆向偏壓時較強。我們發現當注入不同電流時,量測到的頻譜峰值會逐漸藍移,並且在順向偏壓以及逆向偏壓的發光波長有些微的不同。我們用量子侷限史塔克效應以其載子屏蔽效應來解釋頻譜峰值藍移的現象。 | zh_TW |
| dc.description.abstract | We have developed an effective approach to the controlled growth of regularly patterned ZnO nanorod (NR) arrays with the hydrothermal method based on the nano-imprint lithography on the patterned GaN template. The concentration of growth solution, growth temperature, growth duration, and the geometry of pattern are varied to compare the growth results. The diameter and length of the individual ZnO NRs can be potentially tuned over a wide range. The ZnO NR arrays are highly uniform in diameter and height with a perfect alignment along [0001] direction. We have also successfully fabricated Ga-doped ZnO NR arrays (n-ZnO with an electron density of 2.57×10^19 cm-3) and investigated their material properties. The optical characteristics can be improved by appropriate Ga doping and thermal annealing at 300℃ with ambient O2.
The n-ZnO NR arrays are applied to the fabrications of a n-ZnO NRs/p-GaN heterojunction light-emitting diode (LED) and a n-ZnO NRs/CdZnO/ZnO QW/p-GaN LED. Different electroluminescence (EL) spectra under forward and reverse biases are observed. A systematic mechanism is proposed to explain the EL behaviors under forward and reverse biases. Under reverse bias, the current created by the tunneling effect is attributed to the devices emission. It is found that the emission bands of the n-ZnO NRs/p-GaN LED under both forward and reverse biases originated from the p-GaN layer rather than the ZnO layer. The yellow band of the n-ZnO NRs/p-GaN LED originates from the interface defects. While the n-ZnO NRs/p-GaN heterojunction LED exhibits relatively lower EL intensity, LED with the CdZnO/ZnO QWs shows quite strong EL intensity. In the LED with QWs, the emission spectra peak is blue-shifted in increasing injection current in the n-ZnO NRs/CdZnO QW/p-GaN LED. This result can be explained by the carrier screening of the quantum-confined Stark effect (QCSE). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:18:14Z (GMT). No. of bitstreams: 1 ntu-102-R00941012-1.pdf: 14186683 bytes, checksum: 53750788f3c9e62234029a3129c34da2 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Contents
中文摘要…………………………………………................i Abstract……………………………………….....................iii Contents……………………………………..........................v Chapter 1 Introduction 1.1 General Reviews on ZnO as a Light- emitting Material 1.1.1 Crystal Structures.......................................................2 1.1.2 n-type Doping of ZnO................................................3 1.2 Growth Methods for ZnO-related Compounds 1.2.1 Hydrothermal method.................................................5 1.2.2 Molecular Beam Epitaxy (MBE)................................8 1.3 CdZnO Thin Films and CdZnO/ZnO Quantum Wells 1.3.1 CdZnO Thin Films....................................................10 1.3.2 CdZnO/ZnO Quantum Wells....................................11 1.4 CdZnO/(Mg)ZnO Quantum-well Light- emitting Diodes...12 1.5 Regular ZnO NRs array.......................................................13 1.6 Research Motivations..........................................................14 1.7 Organization of the Thesis...................................................16 References.................................................................................20 Chapter 2 Growth of ZnO nanorod array with hydro- thermal method 2.1 Experimental Procedures 2.1.1 Patterned Template Preparation................................30 2.1.2 Hydrothermal Growth of ZnO NRs..........................33 2.2 Results and Discussions 2.2.1 Growth of ZnO NRs.................................................34 2.2.2 Dependence on Solution Concentration...................34 2.2.3. Dependence on Growth Temperature......................35 2.2.4. Dependence on Growth Time..................................36 2.2.5 Dependence on Pattern Geometry............................36 2.2.6 Gallium Doped ZnO NR Array................................37 2.3 Crystal Quality Analyses 2.3.1 Sample Description...................................................38 2.3.2 PL Results………………………………………….39 2.3.3 TEM Analysis Results……………………………..41 References.................................................................................60 Chapter 3 ZnO NR LED Process 3.1 LED Fabrication Procedures...............................................61 3.2 Results and Discussions 3.2.1 I-V Curves................................................................63 3.2.2 Emission Mechanisms of the p-GaN/n-ZnO NR LED.........................................................................64 3.2.3 Emission Mechanisms of the p-GaN/CdZnO QWs/n-ZnO NR LED.......................67 References.................................................................................87 Chapter 4 Conclusions.......................................................................89 | |
| dc.language.iso | en | |
| dc.subject | 水熱法 | zh_TW |
| dc.subject | 氧化鋅奈米柱 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | ZnO nanorod | en |
| dc.subject | hydrothermal method | en |
| dc.subject | LED | en |
| dc.subject | CdZnO | en |
| dc.title | 以水浴法製作規則排列氧化鋅奈米柱及其於發光二極體之應用 | zh_TW |
| dc.title | Fabrication of Regularly-patterned ZnO Nanorods with the Hydrothermal Method and Their Application to Light-emitting Diode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周武清,張守進,黃建璋 | |
| dc.subject.keyword | 水熱法,氧化鋅奈米柱,發光二極體, | zh_TW |
| dc.subject.keyword | ZnO nanorod,hydrothermal method,CdZnO,LED, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 13.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
