Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61893
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬
dc.contributor.authorNan-Lin Wuen
dc.contributor.author吳南霖zh_TW
dc.date.accessioned2021-06-16T13:17:33Z-
dc.date.available2015-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-07-27
dc.identifier.citationAbdel-Hamid, M.F., Aly, D.G., Saad, N.E., Emam, H.M., and Ayoub, D.F. (2011). Serum levels of interleukin-8, tumor necrosis factor-alpha and gamma-interferon in Egyptian psoriatic patients and correlation with disease severity. J Dermatol Sci 38, 442-446.
Allombert-Blaise, C., Tamiji, S., Mortier, L., Fauvel, H., Tual, M., Delaporte, E., Piette, F., DeLassale, E.M., Formstecher, P., Marchetti, P., and Polakowska, R. (2003). Terminal differentiation of human epidermal keratinocytes involves mitochondria- and caspase-dependent cell death pathway. Cell Death Differ 10, 850-852.
Arican, O., Aral, M., Sasmaz, S., and Ciragil, P. (2005). Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005, 273-279.
Bamias, G., Evangelou, K., Vergou, T., Tsimaratou, K., Kaltsa, G., Antoniou, C., Kotsinas, A., Kim, S., Gorgoulis, V., Stratigos, A.J., and Sfikakis, P.P. (2011). Upregulation and nuclear localization of TNF-like cytokine 1A (TL1A) and its receptors DR3 and DcR3 in psoriatic skin lesions. Exp Dermatol 20, 725-731.
Bashir, M.M., Sharma, M.R., and Werth, V.P. (2009). TNF-alpha production in the skin. Arch Dermatol Res 301, 87-91.
Basile, J.R., Zacny, V., and Munger, K. (2001). The cytokines tumor necrosis factor-alpha (TNF-alpha ) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J Biol Chem 276, 22522-22528.
Becher, B., and Pantelyushin, S. (2012). Hiding under the skin: Interleukin-17-producing gammadelta T cells go under the skin? Nat Med 18, 1748-1750.
Berger, A., Quast, S.A., Plotz, M., Kammermeier, A., and Eberle, J. (2013). Sensitization of melanoma cells for TRAIL-induced apoptosis by BMS-345541 correlates with altered phosphorylation and activation of Bax. Cell Death Dis 4, e477.
Bernard, B.A., Asselineau, D., Schaffar-Deshayes, L., and Darmon, M.Y. (1988). Abnormal sequence of expression of differentiation markers in psoriatic epidermis: inversion of two steps in the differentiation program? J Invest Dermatol 90, 801-805.
Bikle, D.D., Oda, Y., and Xie, Z. (2004). Calcium and 1,25(OH)2D: interacting drivers of epidermal differentiation. J Steroid Biochem Mol Biol 89-90, 355-360.
Biswas, D.K., Dai, S.C., Cruz, A., Weiser, B., Graner, E., and Pardee, A.B. (2001). The nuclear factor kappa B (NF-kappa B): a potential therapeutic target for estrogen receptor negative breast cancers. Proc Natl Acad Sci U S A 98, 10386-10391.
Boehncke, W.H., Boehncke, S., Tobin, A.M., and Kirby, B. (2011). The 'psoriatic march': a concept of how severe psoriasis may drive cardiovascular comorbidity. Exp Dermatol 20, 303-307.
Boisseau-Garsaud, A.M., Donatien, P., Margerin, C., and Taieb, A. (1996). EGF receptor expression and growth of psoriatic and normal human keratinocytes are modulated by 1.25 (OH)2-vitamin D3 ex vivo. Arch Dermatol Res 288, 453-457.
Braun, F.K., Al-Yacoub, N., Plotz, M., Mobs, M., Sterry, W., and Eberle, J. (2012). Nonsteroidal anti-inflammatory drugs induce apoptosis in cutaneous T-cell lymphoma cells and enhance their sensitivity for TNF-related apoptosis-inducing ligand. J Invest Dermatol 132, 429-439.
Candi, E., Rufini, A., Terrinoni, A., Dinsdale, D., Ranalli, M., Paradisi, A., De Laurenzi, V., Spagnoli, L.G., Catani, M.V., Ramadan, S., Knight, R.A., and Melino, G. (2006). Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 13, 1037-1047.
Candi, E., Schmidt, R., and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6, 328-340.
Celli, J., Duijf, P., Hamel, B.C., Bamshad, M., Kramer, B., Smits, A.P., Newbury-Ecob, R., Hennekam, R.C., Van Buggenhout, G., van Haeringen, A., Woods, C.G., van Essen, A.J., de Waal, R., Vriend, G., Haber, D.A., Yang, A., McKeon, F., Brunner, H.G., and van Bokhoven, H. (1999). Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell 99, 143-153.
Chang, Y.C., Chen, T.C., Lee, C.T., Yang, C.Y., Wang, H.W., Wang, C.C., and Hsieh, S.L. (2008). Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111, 5054-5063.
Chang, Y.C., Hsu, T.L., Lin, H.H., Chio, C.C., Chiu, A.W., Chen, N.J., Lin, C.H., and Hsieh, S.L. (2004). Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol
75, 486-494.
Chaturvedi, V., Sitailo, L.A., Bodner, B., Denning, M.F., and Nickoloff, B.J. (2006). Defining the caspase-containing apoptotic machinery contributing to cornification in human epidermal equivalents. Exp Dermatol 15, 14-22.
Chen, C.C., Yang, Y.H., Lin, Y.T., Hsieh, S.L., and Chiang, B.L. (2004). Soluble decoy receptor 3: increased levels in atopic patients. J Allergy Clin Immunol 114, 195-197.
Chen, C.Y., Yang, K.Y., Chen, M.Y., Chen, H.Y., Lin, M.T., Lee, Y.C., Perng, R.P., Hsieh, S.L., Yang, P.C., and Chou, T.Y. (2009). Decoy receptor 3 levels in peripheral blood predict outcomes of acute respiratory distress syndrome. Am J Respir Crit Care Med 180, 751-760.
Chen, P.H., and Yang, C.R. (2008). Decoy receptor 3 expression in AsPC-1 human pancreatic adenocarcinoma cells via the phosphatidylinositol 3-kinase-, Akt-, and NF-kappa B-dependent pathway. J Immunol 181, 8441-8449.
Chen, S.J., Wang, Y.L., Kao, J.H., Wu, S.F., Lo, W.T., Wu, C.C., Tao, P.L., Wang, C.C., Chang, D.M., and Sytwu, H.K. (2009). Decoy receptor 3 ameliorates experimental autoimmune encephalomyelitis by directly counteracting local inflammation and downregulating Th17 cells. Mol Immunol 47, 567-574.
Cook, P.W., Piepkorn, M., Clegg, C.H., Plowman, G.D., DeMay, J.M., Brown, J.R., and Pittelkow, M.R. (1997). Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J Clin Invest 100, 2286-2294.
Cretney, E., Takeda, K., Yagita, H., Glaccum, M., Peschon, J.J., and Smyth, M.J. (2002). Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168, 1356-1361.
Croft, M., Benedict, C.A., and Ware, C.F. (2013). Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 12, 147-168.
Denecker, G., Ovaere, P., Vandenabeele, P., and Declercq, W. (2008). Caspase-14 reveals its secrets. J Cell Biol 180, 451-458.
Denning, M.F. (2004). Epidermal keratinocytes: regulation of multiple cell phenotypes by multiple protein kinase C isoforms. Int J Biochem Cell Biol 36, 1141-1146.
Denning, M.F. (2010). Protein kinase C/mitogen-activated protein kinase signaling in keratinocyte differentiation control. J Invest Dermatol 130, 1968-1970.
Descargues, P., Sil, A.K., and Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. EMBO J 27, 2639-2647.
Di Cesare, A., Di Meglio, P., and Nestle, F.O. (2009). The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129, 1339-1350.
Diessenbacher, P., Hupe, M., Sprick, M.R., Kerstan, A., Geserick, P., Haas, T.L., Wachter, T., Neumann, M., Walczak, H., Silke, J., and Leverkus, M. (2008). NF-kappaB inhibition reveals differential mechanisms of TNF versus TRAIL-induced apoptosis upstream or at the level of caspase-8 activation independent of cIAP2. J Invest Dermatol 128, 1134-1147.
Dimberg, L.Y., Anderson, C.K., Camidge, R., Behbakht, K., Thorburn, A., and Ford, H.L. (2013). On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene 32, 1341-1350.
Dlugosz, A.A., and Yuspa, S.H. (1993). Coordinate changes in gene expression which mark the spinous to granular cell transition in epidermis are regulated by protein kinase C. J Cell Biol 120, 217-225.
Dlugosz, A.A., and Yuspa, S.H. (1994). Protein kinase C regulates keratinocyte transglutaminase (TGK) gene expression in cultured primary mouse epidermal keratinocytes induced to terminally differentiate by calcium. J Invest Dermatol 102, 409-414.
Duvic, M., Asano, A.T., Hager, C., and Mays, S. (1998). The pathogenesis of psoriasis and the mechanism of action of tazarotene. J Am Acad Dermatol 39, S129-133.
Eberle, J., Fecker, L.F., Forschner, T., Ulrich, C., Rowert-Huber, J., and Stockfleth, E. (2007). Apoptosis pathways as promising targets for skin cancer therapy. Br J Dermatol 156 Suppl 3, 18-24.
Eckert, R.L., Efimova, T., Balasubramanian, S., Crish, J.F., Bone, F., and Dashti, S. (2003). p38 Mitogen-activated protein kinases on the body surface--a function for p38 delta. J Invest Dermatol 120, 823-828.
Eckert, R.L., Sturniolo, M.T., Broome, A.M., Ruse, M., and Rorke, E.A. (2005). Transglutaminase function in epidermis. J Invest Dermatol 124, 481-492.
Efimova, T., Broome, A.M., and Eckert, R.L. (2003). A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. J Biol Chem 278, 34277-34285.
Eidsmo, L., Fluur, C., Rethi, B., Eriksson Ygberg, S., Ruffin, N., De Milito, A., Akuffo, H., and Chiodi, F. (2007). FasL and TRAIL induce epidermal apoptosis and skin ulceration upon exposure to Leishmania major. Am J Pathol 170, 227-239.
Elder, J.T., Bruce, A.T., Gudjonsson, J.E., Johnston, A., Stuart, P.E., Tejasvi, T., Voorhees, J.J., Abecasis, G.R., and Nair, R.P. (2010). Molecular dissection of psoriasis: integrating genetics and biology. J Invest Dermatol 130, 1213-1226.
Elder, J.T., Fisher, G.J., Lindquist, P.B., Bennett, G.L., Pittelkow, M.R., Coffey, R.J., Jr., Ellingsworth, L., Derynck, R., and Voorhees, J.J. (1989). Overexpression of transforming growth factor alpha in psoriatic epidermis. Science 243, 811-814.
Elias, P.M. (2005). Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125, 183-200.
Elias, P.M., Ahn, S.K., Denda, M., Brown, B.E., Crumrine, D., Kimutai, L.K., Komuves, L., Lee, S.H., and Feingold, K.R. (2002). Modulations in epidermal calcium regulate the expression of differentiation-specific markers. The Journal of investigative dermatology 119, 1128-1136.
Elias, P.M., and Feingold, K.R. (2001). Does the tail wag the dog? Role of the barrier in the pathogenesis of inflammatory dermatoses and therapeutic implications. Arch Dermatol 137, 1079-1081.
Ellinghaus, D., Ellinghaus, E., Nair, R.P., Stuart, P.E., Esko, T., Metspalu, A., Debrus, S., Raelson, J.V., Tejasvi, T., Belouchi, M., West, S.L., Barker, J.N., Koks, S., Kingo, K., Balschun, T., Palmieri, O., Annese, V., Gieger, C., Wichmann, H.E., Kabesch, M., Trembath, R.C., Mathew, C.G., Abecasis, G.R., Weidinger, S., Nikolaus, S., Schreiber, S., Elder, J.T., Weichenthal, M., Nothnagel, M., and Franke, A. (2012). Combined Analysis of Genome-wide Association Studies for Crohn Disease and Psoriasis Identifies Seven Shared Susceptibility Loci. Am J Hum Genet 90, 636-647.
Fecker, L.F., Stockfleth, E., Braun, F.K., Rodust, P.M., Schwarz, C., Kohler, A., Leverkus, M., and Eberle, J. (2010). Enhanced death ligand-induced apoptosis in cutaneous SCC cells by treatment with diclofenac/hyaluronic acid correlates with downregulation of c-FLIP. J Invest Dermatol 130, 2098-2109.
Funke, B., Autschbach, F., Kim, S., Lasitschka, F., Strauch, U., Rogler, G., Gdynia, G., Li, L., Gretz, N., Macher-Goeppinger, S., Sido, B., Schirmacher, P., Meuer, S.C., and Roth, W. (2009). Functional characterisation of decoy receptor 3 in Crohn's disease. Gut 58, 483-491.
Galgon, T., Wohlrab, W., and Drager, B. (2005). Betulinic acid induces apoptosis in skin cancer cells and differentiation in normal human keratinocytes. Exp Dermatol 14, 736-743.
Gallala, H., Macheleidt, O., Doering, T., Schreiner, V., and Sandhoff, K. (2004). Nitric oxide regulates synthesis of gene products involved in keratinocyte differentiation and ceramide metabolism. Eur J Cell Biol 83, 667-679.
Galluzzi, L., Vitale, I., Abrams, J.M., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., Dawson, T.M., Dawson, V.L., El-Deiry, W.S., Fulda, S., Gottlieb, E., Green, D.R., Hengartner, M.O., Kepp, O., Knight, R.A., Kumar, S., Lipton, S.A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nunez, G., Peter, M.E., Piacentini, M., Rubinsztein, D.C., Shi, Y., Simon, H.U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G., and Kroemer, G. (2012). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19, 107-120.
Gandarillas, A., Goldsmith, L.A., Gschmeissner, S., Leigh, I.M., and Watt, F.M. (1999). Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes. Exp Dermatol 8, 71-79.
Gazel, A., Banno, T., Walsh, R., and Blumenberg, M. (2006). Inhibition of JNK promotes differentiation of epidermal keratinocytes. J Biol Chem 281, 20530-20541.
Gazel, A., Nijhawan, R.I., Walsh, R., and Blumenberg, M. (2008). Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes. J Cell Physiol 215, 292-308.
Gelfand, J.M., Neimann, A.L., Shin, D.B., Wang, X., Margolis, D.J., and Troxel, A.B. (2006). Risk of myocardial infarction in patients with psoriasis. Jama 296, 1735-1741.
Gottlieb, A.B. (2005). Psoriasis: emerging therapeutic strategies. Nat Rev Drug Discov 4, 19-34.
Green, H. (1980). The keratinocyte as differentiated cell type. Harvey Lect 74, 101-139.
Grosse-Wilde, A., Voloshanenko, O., Bailey, S.L., Longton, G.M., Schaefer, U., Csernok, A.I., Schutz, G., Greiner, E.F., Kemp, C.J., and Walczak, H. (2008). TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J Clin Invest 118, 100-110.
Guttman-Yassky, E., Nograles, K.E., and Krueger, J.G. (2011). Contrasting pathogenesis of atopic dermatitis and psoriasis--part I: clinical and pathologic concepts. J Allergy Clin Immunol 127, 1110-1118.
Han, B., Bojalil, R., Amezcua-Guerra, L.M., Springall, R., Valderrama-Carvajal, H., Wu, J., and Luo, H. (2008). DcR3 as a diagnostic parameter and risk factor for systemic lupus erythematosus. Int Immunol 20, 1067-1075.
Hatano, Y., Terashi, H., Arakawa, S., and Katagiri, K. (2005). Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J Invest Dermatol 124, 786-792.
Hayashi, S., Miura, Y., Nishiyama, T., Mitani, M., Tateishi, K., Sakai, Y., Hashiramoto, A., Kurosaka, M., Shiozawa, S., and Doita, M. (2007). Decoy receptor 3 expressed in rheumatoid synovial fibroblasts protects the cells against Fas-induced apoptosis. Arthritis Rheum 56, 1067-1075.
Hehlgans, T., and Pfeffer, K. (2005). The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115, 1-20.
Hennings, H., Holbrook, K., Steinert, P., and Yuspa, S. (1980). Growth and differentiation of mouse epidermal cells in culture: effects of extracellular calcium. Curr Probl Dermatol 10, 3-25.
Higashiyama, M., Hashimoto, K., Matsumoto, K., and Yoshikawa, K. (1994). Differential expression of transforming growth factor-alpha (TGF-alpha) and EGF receptor in transitional area of psoriatic epidermis. J Dermatol Sci 7, 45-53.
Hobbs, S.S., Goettel, J.A., Liang, D., Yan, F., Edelblum, K.L., Frey, M.R., Mullane, M.T., and Polk, D.B. (2011). TNF transactivation of EGFR stimulates cytoprotective COX-2 expression in gastrointestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 301, G220-229.
Hsiao, C.H., Lin, Y.T., Lai, C.C., and Hsueh, P.R. (2010). Clinicopathologic characteristics of nontuberculous mycobacterial lung disease in Taiwan. Diagn Microbiol Infect Dis 68, 228-235.
Hsu, M.J., Lin, W.W., Tsao, W.C., Chang, Y.C., Hsu, T.L., Chiu, A.W., Chio, C.C., and Hsieh, S.L. (2004). Enhanced adhesion of monocytes via reverse signaling triggered by decoy receptor 3. Exp Cell Res 292, 241-251.
Hsu, T.L., Chang, Y.C., Chen, S.J., Liu, Y.J., Chiu, A.W., Chio, C.C., Chen, L., and Hsieh, S.L. (2002). Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J Immunol 168, 4846-4853.
Hsu, T.L., Wu, Y.Y., Chang, Y.C., Yang, C.Y., Lai, M.Z., Su, W.B., and Hsieh, S.L. (2005). Attenuation of Th1 response in decoy receptor 3 transgenic mice. J Immunol 175, 5135-5145.
Ishida-Yamamoto, A., and Iizuka, H. (1995). Differences in involucrin immunolabeling within cornified cell envelopes in normal and psoriatic epidermis. J Invest Dermatol 104, 391-395.
Ivanova, I.A., Nakrieko, K.A., and Dagnino, L. (2009). Phosphorylation by p38 MAP kinase is required for E2F1 degradation and keratinocyte differentiation. Oncogene 28, 52-62.
Jansen, B.J., van Ruissen, F., Cerneus, S., Cloin, W., Bergers, M., van Erp, P.E., and Schalkwijk, J. (2003). Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes. J Invest Dermatol 121, 1433-1439.
Janssens, S., Bols, L., Vandermeeren, M., Daneels, G., Borgers, M., and Geysen, J. (1999). Retinoic acid potentiates TNF-alpha-induced ICAM-1 expression in normal human epidermal keratinocytes. Biochem Biophys Res Commun 255, 64-69.
Johnstone, R.W., Frew, A.J., and Smyth, M.J. (2008). The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8, 782-798.
Kakiashvili, E., Dan, Q., Vandermeer, M., Zhang, Y., Waheed, F., Pham, M., and Szaszi, K. (2011). The epidermal growth factor receptor mediates tumor necrosis factor-alpha-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium. J Biol Chem 286, 9268-9279.
Khan, S. (2005). Psoriasis. N Engl J Med 353, 848-850; author reply 848-850.
Kim, S., Fotiadu, A., and Kotoula, V. (2005). Increased expression of soluble decoy receptor 3 in acutely inflamed intestinal epithelia. Clin Immunol 115, 286-294.
King, K.E., and Weinberg, W.C. (2007). p63: defining roles in morphogenesis, homeostasis, and neoplasia of the epidermis. Mol Carcinog 46, 716-724.
Kolly, C., Suter, M.M., and Muller, E.J. (2005). Proliferation, cell cycle exit, and onset of terminal differentiation in cultured keratinocytes: pre-programmed pathways in control of C-Myc and Notch1 prevail over extracellular calcium signals. The Journal of investigative dermatology 124, 1014-1025.
Koster, M.I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., and Roop, D.R. (2007). p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci U S A 104, 3255-3260.
Koster, M.I., and Roop, D.R. (2007). Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol 23, 93-113.
Kraft, C.A., Efimova, T., and Eckert, R.L. (2007). Activation of PKCdelta and p38delta MAPK during okadaic acid dependent keratinocyte apoptosis. Arch Dermatol Res 299, 71-83.
Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, P., Green, D.R., Hengartner, M., Knight, R.A., Kumar, S., Lipton, S.A., Malorni, W., Nunez, G., Peter, M.E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B., and Melino, G. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16, 3-11.
Kump, E., Ji, J., Wernli, M., Hausermann, P., and Erb, P. (2008). Gli2 upregulates cFlip and renders basal cell carcinoma cells resistant to death ligand-mediated apoptosis. Oncogene 27, 3856-3864.
Lamhamedi-Cherradi, S.E., Zheng, S.J., Maguschak, K.A., Peschon, J., and Chen, Y.H. (2003). Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice. Nat Immunol 4, 255-260.
Le Page, C., Koumakpayi, I.H., Lessard, L., Saad, F., and Mes-Masson, A.M. (2005). Independent role of phosphoinositol-3-kinase (PI3K) and casein kinase II (CK-2) in EGFR and Her-2-mediated constitutive NF-kappaB activation in prostate cancer cells. Prostate 65, 306-315.
Lee, C.S., Hu, C.Y., Tsai, H.F., Wu, C.S., Hsieh, S.L., Liu, L.C., and Hsu, P.N. (2008). Elevated serum decoy receptor 3 with enhanced T cell activation in systemic lupus erythematosus. Clin Exp Immunol 151, 383-390.
Lee, H.O., Lee, J.H., Kim, T.Y., and Lee, H. (2007). Regulation of DeltaNp63alpha by tumor necrosis factor-alpha in epithelial homeostasis. FEBS J 274, 6511-6522.
Lee, P., Lee, D.J., Chan, C., Chen, S.W., Ch'en, I., and Jamora, C. (2009). Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 458, 519-523.
Lena, A.M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R.A., Melino, G., and Candi, E. (2008). miR-203 represses 'stemness' by repressing DeltaNp63. Cell Death Differ 15, 1187-1195.
Leverkus, M., Neumann, M., Mengling, T., Rauch, C.T., Brocker, E.B., Krammer, P.H., and Walczak, H. (2000). Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 60, 553-559.
Lin, W.W., and Hsieh, S.L. (2011). Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol 81, 838-847.
Lin, Y.C., Huang, D.Y., Chu, C.L., and Lin, W.W. (2010). Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of toll-like receptors-mediated JNK signaling pathway. Mol Immunol 47, 1569-1578.
Lippens, S., Denecker, G., Ovaere, P., Vandenabeele, P., and Declercq, W. (2005). Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 12 Suppl 2, 1497-1508.
Lippens, S., Hoste, E., Vandenabeele, P., Agostinis, P., and Declercq, W. (2009). Cell death in the skin. Apoptosis 14, 549-569.
Lippens, S., Kockx, M., Knaapen, M., Mortier, L., Polakowska, R., Verheyen, A., Garmyn, M., Zwijsen, A., Formstecher, P., Huylebroeck, D., Vandenabeele, P., and Declercq, W. (2000). Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7, 1218-1224.
Lowes, M.A., Bowcock, A.M., and Krueger, J.G. (2007). Pathogenesis and therapy of psoriasis. Nature 445, 866-873.
Maeda, T., Hao, C., and Tron, V.A. (2001). Ultraviolet light (UV) regulation of the TNF family decoy receptors DcR2 and DcR3 in human keratinocytes. J Cutan Med Surg 5, 294-298.
Marchini, S., Marabese, M., Marrazzo, E., Mariani, P., Cattaneo, D., Fossati, R., Compagnoni, A., Fruscio, R., Lissoni, A.A., and Broggini, M. (2008). DeltaNp63 expression is associated with poor survival in ovarian cancer. Ann Oncol 19, 501-507.
Menter, A., Korman, N.J., Elmets, C.A., Feldman, S.R., Gelfand, J.M., Gordon, K.B., Gottlieb, A., Koo, J.Y., Lebwohl, M., Leonardi, C.L., Lim, H.W., Van Voorhees, A.S., Beutner, K.R., Ryan, C., and Bhushan, R. (2011). Guidelines of care for the management of psoriasis and psoriatic arthritis: section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J Am Acad Dermatol 65, 137-174.
Mielgo, A., Torres, V.A., Schmid, M.C., Graf, R., Zeitlin, S.G., Lee, P., Shields, D.J., Barbero, S., Jamora, C., and Stupack, D.G. (2009). The death effector domains of caspase-8 induce terminal differentiation. PLoS One 4, e7879.
Mikkola, M.L. (2008). TNF superfamily in skin appendage development. Cytokine Growth Factor Rev 19, 219-230.
Mikkola, M.L., and Thesleff, I. (2003). Ectodysplasin signaling in development. Cytokine Growth Factor Rev 14, 211-224.
Mills, A.A., Zheng, B., Wang, X.J., Vogel, H., Roop, D.R., and Bradley, A. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708-713.
Murphy, R.M., Watt, K.K., Cameron-Smith, D., Gibbons, C.J., and Snow, R.J. (2003). Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT-PCR. Physiol Genomics 12, 163-174.
Nagira, T., Nagahata-Ishiguro, M., and Tsuchiya, T. (2007). Effects of sulfated hyaluronan on keratinocyte differentiation and Wnt and Notch gene expression. Biomaterials 28, 844-850.
Nanney, L.B., Stoscheck, C.M., Magid, M., and King, L.E., Jr. (1986). Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis. J Invest Dermatol 86, 260-265.
Nelson, A.M., Cong, Z., Gilliland, K.L., and Thiboutot, D.M. (2011). TRAIL contributes to the apoptotic effect of 13-cis retinoic acid in human sebaceous gland cells. Br J Dermatol 165, 526-533.
Nestle, F.O., Di Meglio, P., Qin, J.Z., and Nickoloff, B.J. (2009a). Skin immune sentinels in health and disease. Nat Rev Immunol 9, 679-691.
Nestle, F.O., Kaplan, D.H., and Barker, J. (2009b). Psoriasis. N Engl J Med 361, 496-509.
Neurath, M.F. (2007). IL-23: a master regulator in Crohn disease. Nat Med 13, 26-28.
Ng, D.C., Shafaee, S., Lee, D., and Bikle, D.D. (2000). Requirement of an AP-1 site in the calcium response region of the involucrin promoter. J Biol Chem 275, 24080-24088.
Nguyen, B.C., Lefort, K., Mandinova, A., Antonini, D., Devgan, V., Della Gatta, G., Koster, M.I., Zhang, Z., Wang, J., Tommasi di Vignano, A., Kitajewski, J., Chiorino, G., Roop, D.R., Missero, C., and Dotto, G.P. (2006). Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes & development 20, 1028-1042.
Nickoloff, B.J. (2007). Cracking the cytokine code in psoriasis. Nat Med 13, 242-244.
Nickoloff, B.J., Qin, J.Z., Chaturvedi, V., Bacon, P., Panella, J., and Denning, M.F. (2002). Life and death signaling pathways contributing to skin cancer. J Investig Dermatol Symp Proc 7, 27-35.
Okuyama, R., Nguyen, B.C., Talora, C., Ogawa, E., Tommasi di Vignano, A., Lioumi, M., Chiorino, G., Tagami, H., Woo, M., and Dotto, G.P. (2004). High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 6, 551-562.
Otsuki, T., Tomokuni, A., Sakaguchi, H., Aikoh, T., Matsuki, T., Isozaki, Y., Hyodoh, F., Ueki, H., Kusaka, M., Kita, S., and Ueki, A. (2000). Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clin Exp Immunol 119, 323-327.
Papp, H., Czifra, G., Lazar, J., Gonczi, M., Csernoch, L., Kovacs, L., and Biro, T. (2003). Protein kinase C isozymes regulate proliferation and high cell density-mediated differentiation in HaCaT keratinocytes. Experimental dermatology 12, 811-824.
Pastore, S., Mascia, F., Mariani, V., and Girolomoni, G. (2008). The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol 128, 1365-1374.
Peternel, S., Prpic-Massari, L., Manestar-Blazic, T., Brajac, I., and Kastelan, M. (2011). Increased expression of TRAIL and its death receptors DR4 and DR5 in plaque psoriasis. Arch Dermatol Res 303, 389-397.
Pillai, S., Bikle, D.D., Eessalu, T.E., Aggarwal, B.B., and Elias, P.M. (1989). Binding and biological effects of tumor necrosis factor alpha on cultured human neonatal foreskin keratinocytes. J Clin Invest 83, 816-821.
Pitti, R.M., Marsters, S.A., Lawrence, D.A., Roy, M., Kischkel, F.C., Dowd, P., Huang, A., Donahue, C.J., Sherwood, S.W., Baldwin, D.T., Godowski, P.J., Wood, W.I., Gurney, A.L., Hillan, K.J., Cohen, R.L., Goddard, A.D., Botstein, D., and Ashkenazi, A. (1998). Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396, 699-703.
Proksch, E., Brandner, J.M., and Jensen, J.M. (2008). The skin: an indispensable barrier. Exp Dermatol 17, 1063-1072.
Qin, J., Chaturvedi, V., Bonish, B., and Nickoloff, B.J. (2001). Avoiding premature apoptosis of normal epidermal cells. Nat Med 7, 385-386.
Ratovitski, E.A., Patturajan, M., Hibi, K., Trink, B., Yamaguchi, K., and Sidransky, D. (2001). p53 associates with and targets Delta Np63 into a protein degradation pathway. Proc Natl Acad Sci U S A 98, 1817-1822.
Raymond, A.A., Mechin, M.C., Nachat, R., Toulza, E., Tazi-Ahnini, R., Serre, G., and Simon, M. (2007). Nine procaspases are expressed in normal human epidermis, but only caspase-14 is fully processed. Br J Dermatol 156, 420-427.
Rimondi, E., Secchiero, P., Quaroni, A., Zerbinati, C., Capitani, S., and Zauli, G. (2006). Involvement of TRAIL/TRAIL-receptors in human intestinal cell differentiation. J Cell Physiol 206, 647-654.
Rosenthal, D.S., Simbulan-Rosenthal, C.M., Iyer, S., Spoonde, A., Smith, W., Ray, R., and Smulson, M.E. (1998). Sulfur mustard induces markers of terminal differentiation and apoptosis in keratinocytes via a Ca2+-calmodulin and caspase-dependent pathway. J Invest Dermatol 111, 64-71.
Sabbisetti, V., Di Napoli, A., Seeley, A., Amato, A.M., O'Regan, E., Ghebremichael, M., Loda, M., and Signoretti, S. (2009). p63 promotes cell survival through fatty acid synthase. PLoS One 4, e5877.
Sarra, M., Pallone, F., Macdonald, T.T., and Monteleone, G. (2010). IL-23/IL-17 axis in IBD. Inflamm Bowel Dis 16, 1808-1813.
Schmidt, M., Goebeler, M., Posern, G., Feller, S.M., Seitz, C.S., Brocker, E.B., Rapp, U.R., and Ludwig, S. (2000). Ras-independent activation of the Raf/MEK/ERK pathway upon calcium-induced differentiation of keratinocytes. J Biol Chem 275, 41011-41017.
Schmiegel, W., Roeder, C., Schmielau, J., Rodeck, U., and Kalthoff, H. (1993). Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor in human pancreatic cancer cells. Proc Natl Acad Sci U S A 90, 863-867.
Schottelius, A.J., Moldawer, L.L., Dinarello, C.A., Asadullah, K., Sterry, W., and Edwards, C.K., 3rd. (2004). Biology of tumor necrosis factor-alpha- implications for psoriasis. Exp Dermatol 13, 193-222.
Scott, K.A., Arnott, C.H., Robinson, S.C., Moore, R.J., Thompson, R.G., Marshall, J.F., and Balkwill, F.R. (2004). TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during tumour promotion. A role for TNF-alpha in keratinocyte migration? Oncogene 23, 6954-6966.
Sebastian, S., Settleman, J., Reshkin, S.J., Azzariti, A., Bellizzi, A., and Paradiso, A. (2006). The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 1766, 120-139.
Sedger, L.M., Glaccum, M.B., Schuh, J.C., Kanaly, S.T., Williamson, E., Kayagaki, N., Yun, T., Smolak, P., Le, T., Goodwin, R., and Gliniak, B. (2002). Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 32, 2246-2254.
Segre, J.A. (2006). Epidermal barrier formation and recovery in skin disorders. J Clin Invest 116, 1150-1158.
Shepard, H.M., Brdlik, C.M., and Schreiber, H. (2008). Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest 118, 3574-3581.
Shirakata, Y., Komurasaki, T., Toyoda, H., Hanakawa, Y., Yamasaki, K., Tokumaru, S., Sayama, K., and Hashimoto, K. (2000). Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem 275, 5748-5753.
Song, J.J., and Lee, Y.J. (2008). Differential cleavage of Mst1 by caspase-7/-3 is responsible for TRAIL-induced activation of the MAPK superfamily. Cell Signal 20, 892-906.
Stoll, S.W., Kansra, S., Peshick, S., Fry, D.W., Leopold, W.R., Wiesen, J.F., Sibilia, M., Zhang, T., Werb, Z., Derynck, R., Wagner, E.F., and Elder, J.T. (2001). Differential utilization and localization of ErbB receptor tyrosine kinases in skin compared to normal and malignant keratinocytes. Neoplasia 3, 339-350.
Strasser, A., Jost, P.J., and Nagata, S. (2009). T
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61893-
dc.description.abstract皮膚是人體的第一線障壁,可防止過量水份經皮喪失,並保護個體免於受到外來的傷害及病原體的入侵。皮膚角質細胞的持續增生與控制良好的細胞死亡過程之間能否平衡對於正常皮膚的恆定性是重要的。角質化是皮膚角質細胞終端分化的過程,是一種與細胞凋亡有所不同的特殊性的計畫性細胞死亡。這些終端分化的死亡角質細胞將會建構皮膚最外層的角質層,作為皮膚主要的障壁。而皮膚內各種不同細胞包括上皮角質細胞、真皮纖維母細胞、及各種免疫細胞之間的協調作用對於維持皮膚的恆定性也是不可或缺的。當正常皮膚恆定性受到破壞時,將會造成各種細胞異常增生、死亡,分化異常以及嚴重發炎的皮膚疾病。上皮角質細胞如同免疫細胞一樣,也會表現許多腫瘤壞死因子家族成員及受體。雖然許多表現在免疫細胞的家族成員及受體的生物功能已被發現,但是許多腫瘤壞死因子家族成員及受體在皮膚的生物角色仍然所知有限。
在我們的研究中,我們首先評估tumor necrosis factor related apoptosis-inducing ligand (TRAIL) 對上皮角質細胞的作用。TRAIL 是一種廣為人知可誘發變異細胞產生細胞凋亡的因子,而我們主要著重於TRAIL對於角質細胞終端分化的作用及其潛在的分子機轉。在第二部分,我們則研究第三號誘餌受體在乾癬的表現。乾癬是一種角質細胞增生及分化異常、發炎及血管新生的皮膚疾病。第三號誘餌受體是Fas ligand (FasL),LIGHT (TNFSF14) 及TNF-like molecule 1A (TL1A) 的游離受體,在許多發炎疾病、自體免疫疾病及惡性疾病的致病過程中扮演了多重角色。在皮膚生物學方面,第三號誘餌受體已被發現可表現於皮膚初始角質細胞;而且在乾癬皮膚病灶中,第三號誘餌受體的表現會上升。然而第三號誘餌受體在乾癬皮膚病灶的表現是如何被調控的,目前仍然未知。
在第一部分中,我們發現TRAIL可誘發角質細胞表現終端分化標誌如involucrin 及 type 1 transglutaminase。TRAIL誘導角質細胞分化時,caspases 3 及 8會活化,同時間細胞凋亡也會被誘發。抑制這些凋亡性caspase會同時抑制TRAIL所誘發的細胞凋亡與終端分化,但是卻不太會影響鈣及phorbol 12-myristate 13-acetate所誘導的角質細胞分化現象。並且TRAIL也會差別性調控角質細胞ERK及p38的活化現象。此外,TRAIL所活化的caspase會造成p63的降解,然而p63的存在對於TRAIL誘導角質細胞分化是必須的,因為knock down ΔNp63會減少TRAIL誘導的角質細胞分化。我們的結果顯示TRAIL可誘導角質細胞的分化及凋亡,而caspase關鍵性地調控這些過程。我們的研究提出了凋亡性caspase對角質細胞終端分化的一個新角色,也進一步闡明此特殊細胞死亡模式的分子機轉。
在第二部分裡,我們發現第三號誘餌受體可表現在乾癬皮膚病灶的真皮血管內皮細胞及病灶上皮組織。血清實驗分析顯示,相較於健康個體,乾癬病人的血清中有較高的第三號誘餌受體及較低的FasL。進一步的研究發現,表皮生長因子受體對於調控第三號誘餌受體在角質細胞的表現具有關鍵的角色。利用表皮生長因子及transforming growth factor (TGF)-alpha來活化表皮生長因子受體可明顯地促進角質細胞產生第三號誘餌受體。而與乾癬致病機轉有關的發炎性細胞激素中,腫瘤壞死因子alpha能增加角質細胞及血管內皮細胞產生第三號誘餌受體。此外,knock down表皮生長因子受體的表現及利用表皮生長因子受體抑制劑可以抑制腫瘤壞死因子alpha所誘發的第三號誘餌受體在角質細胞的表現。而NF-kappa B 路徑則關鍵性地參與了腫瘤壞死因子alpha及表皮生長因子作用的分子機轉。我們的研究結果闡明了第三號誘餌受體在角質細胞及內皮細胞表現的新穎調控機制,同時提供了乾癬致病機轉研究的新觀點。
zh_TW
dc.description.abstractSkin provides the primary barrier to prevent excessive water loss and protect against the external insults and invasion of pathogens. The homeostasis of normal skin is maintained by the balance between continuous replenishment of proliferating keratinocytes and well-controlled cell death. Cornification, the process of terminal differentiation of epidermal keratinocytes, is a special form of programmed cell death in skin and distinct from apoptotic cell death. These terminally differentiated, dead keratinocytes construct the outermost cornified layer, which is the principal barrier of skin. Skin homeostasis is also controlled by coordination between different cellular effectors in skin including epidermal keratinocytes, dermal fibroblasts and various immunocytes. Disturbance of skin homeostasis can lead to diverse disorders characterized by aberrant growth, cell death, differentiation or severe inflammation. Like immunocytes, epidermal keratinocytes also can express many members of tumor necrosis factor (TNF) and tumor necrosis factor receptor (TNFR) superfamily. Although many functions of TNF and TNFR superfamily in immune cells have been revealed, the known biological roles in skin still remain limited.
In our studies, we first tried to evaluate the effect of tumor necrosis factor related apoptosis-inducing ligand (TRAIL), which is a well-known apoptosis inducer in transformed cells, on primary human epidermal keratinocytes, focusing on keratinocyte differentiation and the underlying molecular mechanisms. Secondly, we investigated the expression of decoy receptor 3 (DcR3) in psoriasis, which is characterized by aberrant keratinocyte proliferation and differentiation, inflammation, and angiogenesis. DcR3 is a soluble receptor of Fas ligand (FasL), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A), and plays pleiotropic roles in many inflammatory and autoimmune disorders and malignant diseases. In cutaneous biology, DcR3 is expressed in primary human epidermal keratinocytes and is up-regulated in skin lesions of psoriasis. However, the regulatory mechanisms of DcR3 over-expression in skin lesions of psoriasis are unknown.
For the part I, we found TRAIL could induce the expression of keratinocyte differentiation markers involucrin and type 1 transglutaminase in normal human epidermal keratinocytes. The induction of differentiation occurred mainly under the activation of caspases 3 and 8, and apoptosis could also be triggered. Inhibition of these apoptotic caspases attenuated both of the apoptosis and differentiation of keratinocytes caused by TRAIL, but barely affected the induction of differentiation caused by calcium and phorbol 12-myristate 13-acetate. The differential regulation of ERK and p38 activation by TRAIL was also observed. Moreover, the degradation of p63 was induced by TRAIL-elicited caspase activation. However, the existence of p63 is essential for the initiation of keratinocyte differentiation caused by TRAIL because knockdown of ΔNp63 decreased the TRAIL-induced differentiation. Taken together, our results suggest that TRAIL can be an inducer of both differentiation and apoptosis in human keratinocytes, and that caspases critically mediate these processes. This study identifies a new role of apoptotic caspases for terminal differentiation of keratinocytes and further elucidates the molecular pathways involved in this unique model of cell death.
For part II, we demonstrate that DcR3 can be detected in both dermal blood vessels and epidermal layers of psoriatic skin lesions. Analysis of serum samples showed that DcR3 was elevated, but FasL was downregulated in psoriatic patients compared with normal individuals. Additional studies revealed a central role of epidermal growth factor receptor (EGFR) in controlling the basal expression of DcR3 in keratinocytes. Activation of EGFR by epidermal growth factor (EGF) or transforming growth factor (TGF)-alpha strikingly upregulated DcR3 production. TNF-alpha enhanced DcR3 expression in both keratinocytes and endothelial cells compared with various inflammatory cytokines involved in psoriasis. Additionally, TNF-alpha-enhanced DcR3 expression in keratinocytes was inhibited when EGFR was knocked down or EGFR inhibitor was used. The NF-kappa B pathway was critically involved in the molecular mechanisms underlying the action of EGFR and TNF-alpha. Collectively, the novel regulatory mechanisms of DcR3 expression in keratinocytes and endothelial cells provide new insights into the pathogenesis of psoriasis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:17:33Z (GMT). No. of bitstreams: 1
ntu-102-D94443002-1.pdf: 8280422 bytes, checksum: 09c391823cadf3f19daee5705c6b88e2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsTable of contents
Abbreviations---------------------------------------------1
Abstract--------------------------------------------------4
中文摘要--------------------------------------------------7
Introduction------------------------------------------9
Specific Aims--------------------------------------------29
Materials and Methodsmm----------------------------------30
Part I: TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression
Results--------------------------------------------------40
Discussion-----------------------------------------------46
Figures--------------------------------------------------52
Part II: EGFR-driven up-regulation of decoy receptor 3 in keratinocytes contributes to the pathogenesis of psoriasis
Results--------------------------------------------------66
Discussion-----------------------------------------------74
Figures--------------------------------------------------80
Appendix-------------------------------------------------92
References-----------------------------------------------99
Publication---------------------------------------------129
dc.language.isoen
dc.subject角質細胞zh_TW
dc.subject分化zh_TW
dc.subject乾癬zh_TW
dc.subjectTRAILzh_TW
dc.subject表皮生長因子受體zh_TW
dc.subject第三號誘餌受體zh_TW
dc.subjectEGFRen
dc.subjectDcR3en
dc.subjectkeratinocyteen
dc.subjectdifferentiationen
dc.subjectpsoriasisen
dc.subjectTRAILen
dc.titleTRAIL及第三號誘餌受體在皮膚角質細胞終端分化及發炎疾病的角色探討zh_TW
dc.titleRoles of TRAIL and decoy receptor 3 in epidermal keratinocyte terminal differentiation and inflammatory skin diseasesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝世良,許秉寧,符文美,王莉芳
dc.subject.keywordTRAIL,第三號誘餌受體,角質細胞,分化,乾癬,表皮生長因子受體,zh_TW
dc.subject.keywordTRAIL,DcR3,keratinocyte,differentiation,psoriasis,EGFR,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2013-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved