請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61891完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳復國 | |
| dc.contributor.author | Yi-Wei Lin | en |
| dc.contributor.author | 林宜蔚 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:17:28Z | - |
| dc.date.available | 2015-08-08 | |
| dc.date.copyright | 2013-08-08 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-28 | |
| dc.identifier.citation | [1]http://boronextrication.com/2009/12/more-uhss-and-ahss-in-the-future.
[2]http://www.collisionstandard.com/2009/08/AHSS.php. [3]http://www.worldautosteel.org. [4]蔡恒光, “先進高強度鋼板反覆拉壓與雙軸拉伸變形特性之研究”, 國立台灣大學機械工程研究所博士論文, 2012. [5]W. Thomas, T. Oenoki, and T. Altan, “Process simulation in stamping-recent applications for product and process design”, Journal of Materials Processing Technology, Vol. 98, pp. 232-243, 2000. [6]M. Banua, M. Takamura, T. Hama, O. Naidim, C. Teodosiu, and A. Makinouchi, “Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part”, Journal of Materials Processing Technology, Vol. 173, pp. 178-184, 2006. [7]J. H. Song, H. Huh, and S. H. Kim, “Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology”, Journal of Engineering Materials and Technology, Vol. 129, pp. 397-406, 2007. [8]L. Noels, L. Stainier, and J. P. Ponthot, “Combined implicit/explicit algorithms for crashworthiness analysis”, International Journal of Impact Engineering, Vol. 30, pp. 1161-1177, 2004. [9]R. H. Wagoner and M. Li, “Simulation of springback: through-thickness integration”, International Journal of Plasticity, Vol. 23, pp. 345-360, 2007. [10]S. K. Panthi, N. Ramakrishnan, K. K. Pathak, and J. S. Chouhanb, “An analysis of springback in sheet metal bending using finite element method (FEM)”, Journal of Materials Processing Technology, Vol. 186, pp. 120-124, 2007. [11]J. T. Gau and G. L. Kinzel, “A new model for springback prediction in which the bauschinger effect is considered”, International Journal of Mechanical Sciences, Vol. 43, pp. 1813-1832, 2001. [12]F. Yoshida, M. Urabe, and V. V. Toropov, “Identification of material parameters in constitutive model for sheet metals from cyclic bending tests”, International Journal of Mechanical Sciences, Vol. 40, pp. 237-249,1998. [13]F. Yoshida and M. Urabe, “Computer-aided process design for the tension levelling of metallic strips”, Journal of Materials Processing Technology, Vols. 89-90, pp. 218-223, 1999. [14]F. Yoshida, “A constitutive model of cyclic plasticity”, International Journal of Plasticity, Vol. 16, pp. 359-380, 2000. [15]F. Yoshida and T. Uemori, “A model of large-strain cyclic plasticity describing the Bauschinger effect and work hardening stagnation”, International Journal of Plasticity, Vol. 18, pp. 661-686, 2002. [16]F. Yoshida, T. Uemori, and K. Fujiwara, “Elastic-plastic behavior of steel sheet under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, Vol. 18, pp. 633-659, 2002. [17]F. Yoshida, T. Uemori, S. Abe, and R. Hino, “A model of large strain cyclic plasticity and its numerical simulation application to springback prediction and compensation”, NUMISHEET 2008, pp. 19-24, September 1-5, 2008, Interlaken, Switzerland. [18]F. Yoshida, “Material models for accurate simulation of sheet metal forming and springback”, NUMIFORM 2010, Vol.1252, pp. 71-78, June 13-17, 2010, Pohang, Korea. [19]S. Jiang, “Springback Investigations”, M.S. Thesis, The Ohio State University, Columbus, OH, 1997. [20]L. Geng, Y. Shen, and R. H. Wagoner, “Anisotropic hardening equations derived from reverse-bend testing”, International Journal of Plasticity, Vol. 18, pp.743-767, 2002. [21]K. M. Zhao and J. K. Lee, “Finite element analysis of the three-point bending of sheet metals”, Journal of materials processing technology, Vol. 122, pp.6-11, 2002. [22]E. Omerspahic, K. Mattiasson, and B Enquist, “Identification of material hardening parameters by three-point bending of metal sheets”, International journal of Mechanical Sciences, Vol. 48, pp.1525-1532, 2006. [23]P. A. Eggertsen and K Mattiasson, “On the modelling of the bending–unbending behaviour for accurate springback predictions”, International Journal of Mechanical Sciences, Vol. 51, pp.547-563, 2009. [24]A. Nasser, A. Yadav, P. Pathak, and T. Altan, “Determination of the flow stress of five AHSS sheet materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) using the uniaxial tensile and the biaxial Viscous Pressure Bulge (VPB) tests”, Journal of Materails Processing Technology, Vol. 210, pp. 429-436, 2010. [25]Y. S. Suh, F. I. Saunders, and R. H. Wagoner, “Anisotropic yield functions with plastic-strain-induced anisotropy”, International Journal of Plasticity, Vol. 12, pp. 417-438, 1996. [26]L. Wang and T. C. Lee, “The effect of yield criteria on the forming limit curve prediction and the deep drawing process simulation”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 988-995, 2006. [27]D. C. Ahn, J. W. Yoon, and K. Y. Kim, “Modeling of anisotropic plastic behavior of ferritic stainless steel sheet”, International Journal of Mechanical Sciences, Vol. 51, pp. 718-725, 2009. [28]H. Vegter, C. H. L. J. T. Horn, Y. An, E. H. Atzema, H. H. Pijlman, T. H. van den Boogaard, and H. Huetink, “Characterisation and modeling of the plastic material behaviour and its application in sheet metal forming simulation”, VII International Conference on Computational Plasticity, 2003. [29]C. Jones, “Biaxial testing of polymer composites”, Mater. World, Vol. 9, pp. 19–21, 2001. [30]V. F. Lukyanov, Y. G. Lyudsmirskii, and V. V. Naprasnikov, “Testing components of shell structures in the biaxial stress states”, Ind. Lab. -USSR, Vol.52, No. 7, pp. 661-664, 1986. [31]D. G. Havard and T. N. Topper, “Biaxial fatigue of 1018 mild steel at low endurance”, First International Conference on pressure vessels Technology ASME, pp. 1267-1277, 1969. [32]D. Lefebvre, C. Chebl, L. Thibodeau, and E. Khazzari, “A high-strain biaxial-testing rig for thin-walled tubes under axial load and pressure”, Experimental Mechanics, Vol. 23, No. 4, pp. 384-392, 1983. [33]T. Kuwabara, S. Ikeda, and K. Kuroda, “Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations”, International Journal of Plasticity, Vol. 23, No. 3, pp. 385-419,2007. [34]T. Makinde, L. Thibodeau, and K. W. Neale, “Development of an apparatus for biaxial testing using cruciform specimens”, Experimental Mechanics, Vol. 32, No. 2, pp. 138-144, 1992. [35]T. Kuwabara, S. Ikeda, and K. Kuroda, “Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension”, Journal of Materials Processing Technology, Vols. 80-81, pp. 517-523, 1998. [36]X. D. Wu, M. Wan, and X. B. Zhou, “Biaxial tensile testing of cruciform specimen under complex loading”, Journal of Materials Processing Technology, Vol. 168, pp. 181-183, 2005. [37]K. J. Pascore and J. W. R. de Villuers, “Low cycle fatigue of steels under biaxial straining”, Journal of Strain Analysis for Engineering Design, Vol. 2, No. 2, pp. 117-126, 1967. [38]E. Shiratori and K. Ikegami, “Experimental study of the subsequent yield surface by using cross-shaped specimens”, Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 373-394, 1968. [39]D. R. Hayhurst, “A biaxial-tension creep-rupture testing machine”, Journal of Strain Analysis for Engineering Design, Vol. 8, No. 2, pp. 119-123, 1973. [40]W. Muller and K. Pohlandt, “New experiments for determining yield loci of sheet metal”, Journal of Materials Processing Technology, Vol. 60, pp. 643-648, 1996. [41]T. Naka, Y. Nakayama, T. Uemori, R. Hino, and F. Yoshida, “Effects of temperature on yield locus for 5083 aluminum alloy sheet”, Journal of Materials Processing Technology, Vol. 140, pp. 494-499, 2003. [42]M. Geiger, W. Hubnatter, and M. Merklein, “Specimen for a novel concept of the biaxial tension test”, Journal of Materials Processing Technology, Vol. 167, pp. 177-183, 2005. [43]D. Kulawinski, K. Nagel, S. Henkel, P. Hubner, H. Fischer, M. Kuna, and H. Biermann, “Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios”, Engineering Fracture Mechanics, Vol. 78, pp. 1684-1695, 2011. [44]A. Makinde, L. Thibodeau, and K. W. Neale, “Development of an apparatus for biaxial testing using cruciform specimens”, Experimental Mechanics, Vol. 32, pp. 138-144, 1992. [45]S. Demmerle and J. P. Boehler, “Optimal design of biaxial tensile cruciform specimens”, Journal of the Mechanics and Physics of Solids, Vol. 41, No. 1, pp. 143-181, 1993. [46]S. B. Lin and J. L. Ding, “Experimental study of the plastic yielding of rolled sheet metals with the cruciform plate specimen”, International Journal of Plasticity, Vol. 11, No. 5, pp.583-604, 1995. [47]S. Ikeda and T. Kuwabara, “Measurement and analysis of work hardening of sheet metals under plane–strain tension”, NUMISHEET 2002, pp. 97–102, 2002, Jeju Island, Korea. [48]Y. Hanabusa, H. Takizawa, and T. Kuwabara, “Numerical verification of a biaxial tensile test method using a cruciform specimen”, Journal of Materials Processing Technology, Vol. 213, pp. 961-970, 2013. [49]http://fr.wikipedia.org/wiki/Effet_Bauschinger [50]R. Hill, “A theory of the yielding and plastic flow of anisotropic metals”, Proceedings of the Royal Society of London, Vol. 193, pp. 281-297, 1948. [51]R. Hill, “Constitutive modeling of orthotropic plasticity in sheet metals”, Journal of the Mechanics and Physics of Solids, Vol. 38, pp. 405-417, 1990. [52]F. Barlat and J. Lian, 'Plastic behavior and stretchability of sheet metals (Part I): A yield function for orthotropic sheets under plane stress conditions', International Journal of Plasticity, Vol. 5, pp. 51-56, 1989. [53]F. Barlat, D. J. Lege, and J. C. Brem, 'A six-component yield function for anisotropic materials', International Journal of Plasticity, Vol. 7, pp. 693-712, 1991. [54]P. Tiernan, and A. Hannon, “A review of planar biaxial tensile test systems for sheet metal”, Journal of Materials Processing Technology, Vol. 198, No. 3, pp. 1-13, 2008. [55]蘇昱竹,“先進高強度鋼板沖壓成形回彈現象之研究”, 國立台灣大學機械工程研究所碩士論文, 2007. [56]洪英治,“先進高強度鋼板沖壓成形包辛格效應之研究”, 國立台灣大學機械工程研究所碩士論文, 2011. [57]林志勳,“高強度汽車結構件沖壓成形側壁捲曲現象之研究”, 國立台灣大學機械工程研究所碩士論文, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61891 | - |
| dc.description.abstract | 為因應日益嚴苛的環保要求以及燃油效率提升的壓力,輕量化正是國際間各大汽車廠努力的目標。因此為了兼顧生產成本與達成車輛輕量化的目標,使用先進高強度鋼板於汽車結構件之生產已成為國際車廠的共同趨勢。
但隨著鋼板強度的提高,其沖壓成形所面臨的問題相較於傳統低強度鋼更加困難,且側壁外開、側壁捲曲等缺陷亦更為嚴重。針對高強度鋼板之成形問題,目前國際間產學研各界已紛紛投入高強度鋼之材料模型研究,包括考慮包辛格效應(Bauschinger effect)之加工硬化準則與考慮雙軸向受力行為之降伏準則,希望藉由瞭解材料的塑性變形特性,提升對於高強度鋼板沖壓成形特性分析與回彈預測之能力。因此,本研究針對先進高強度鋼板反覆彎曲成形與雙軸拉伸塑性變形特性進行研究,藉此建立完整的先進高強度鋼板沖壓成形材料模型。 在加工硬化準則研究方面,對於包辛格效應之研究方式大多利用單一試片進行拉伸-壓縮實驗,以觀察其反覆受力模式。而實際板材在沖壓成形製程中,較偏向反覆彎曲之受力模式,因此本研究針對高強度鋼板在反覆彎曲成形下之材料包辛格特性與變形機制進行探討,並與板材受拉伸-壓縮之受力狀況與變形特性比較,同時設計三點式反覆彎曲夾治具,進行反覆彎曲實驗,並與有限元素軟體分析之結果比較,驗證Yoshida-Uemori材料模型之必要性。 而在降伏準則研究方面,本研究為探討適用於先進高強度鋼板雙軸受力下之降伏準則。因此,針對雙軸拉伸塑性變形特性進行研究。為建立板材雙軸向拉伸試驗之平台,本研究改良現有之雙軸夾治具機構,使其進行雙軸拉伸試驗時,更為穩定且架設方便。而在雙軸試片 方面,由於目前並無雙軸拉伸試片形狀與尺寸之規範,因此,本研究利用有限元素軟體分析雙軸十字形試片之拉伸狀況,探討不同形狀與幾何造型之試片對量測數據之影響性,並設計出最符合實驗量測之十字形溝槽試片。 在完成雙軸夾治具機構平台之改良與雙軸試片之設計後,即進行雙軸向拉伸實驗與夾治具機構摩擦力實驗,根據實驗數據探討適合描述先進高強度鋼板在雙軸受力下之塑性變形行為的降伏準則,並建立有限元素分析所需之各降伏準則材料模型參數。最後,結合考慮包辛格效應之Yoshida-Uemori材料模型搭配不同降伏準則,應用於基礎載具與業界汽車載具沖壓成形模擬分析,比較模擬與實驗之厚度與回彈結果,其結果顯示Barlar 91降伏準則結合Yoshida-Uemori材料模型,可有效提升先進高強度鋼板於沖壓成形模擬之回彈預測準確性。 | zh_TW |
| dc.description.abstract | As increasing attention and concern are drawn to environmental preservation and sustainability, the lightweight design of automobiles becomes a major goal for vehicle manufacturers all around the globe. Lightweight vehicles also provide a solution relieving fuel inflation in recent years. In order to achieve vehicle lightweight design with cost minimization considered, the use of advanced high strength steels in automobile structural parts manufacture becomes a trend internationally.
However, the increase in steel strength leads to greater obstacles concerning its formation, particularly when comparing to traditional low strength steel. Flaws in springback and side-wall curl also become more severe. Researches and studies have been carried out internationally on the development of advanced high strength steel material models, taking Bauschinger effect's work hardening criteria and yield criteria under biaxial stress into consideration. By gaining understanding of material properties during plastic deformation, hopefully better analysis on the stamping of advanced high strength steel can be achieved with springback prediction becoming more reliable. This research thus aims to explore the biaxial stretching plastic deformation of advanced high strength steel, and establish complete advanced high strength steel material models. Concerning work hardening criteria, research in Bauschinger’s effect often applies uniaxial specimens to carry out tension-compression tests to obtain its reversed stress status. However, in the actual stamping process, the sheet metal is usually subjected to bending and reversed bending deformation such as it passes through the draw bead or the die corner. This research therefore aims to explore the material properties of Bauschinger’s effect and deformation mechanism of advanced high strength steel under cyclic reversed bending deformation, and compare the findings with sheet metal tension-compression tests results. Three-point cyclic reversed bending clamping apparatus was in the same time designed and used to perform cyclic reversed bending experiments. The test data were compared with the finite element simulation results as a way to prove the necessity of the use of Yoshida-Uemori material model to describe the Bauschinger’s effect occurred in the stamping of advanced high strength steel sheets. This research also aims to explore the suitable yield criteria for advanced high strength steel subjected to biaxial stress states. Therefore, aspects on the characteristics of biaxial stretching plastic deformation are focused, in which the mechanisms of biaxial stretching on its equipment are targeted for improvement. The goal is to achieve better stability and ease installation during biaxial stretching tests. As for the biaxial specimen, specifications and restrictions for specimen shape and dimension are not available to date. The finite element analysis was then selected to determine the performance of biaxial stretching crossed-shaped specimen. The impact of specimen shape and geometric modeling on the measurement data was analyzed and used to design the most ideal cross-shaped specimen with slots for experimental purposes. Once achieving improvement on biaxial stretching mechanism and biaxial specimen, biaxial stretching test and clamping apparatus friction test were carried out. The experimental data obtained were used to explore the most suitable yield criteria for defining the plastic deformation behavior of advanced high strength steel under biaxial stress states. The yield criteria parameters for finite element analysis are established as the outcome. Finally, the Yoshida-Uemori model is taken into consideration for the selective combination with various yielding criteria, as means of simulating the stamping of basic and industrial vehicle carriers. The comparison of simulated and experimental results on material thickness and springback shows that the combination of Barlar 91 yield criterion with Yoshida-Uemori model is very effective in springback prediction of advanced high strength steel stamping. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:17:28Z (GMT). No. of bitstreams: 1 ntu-102-R00522510-1.pdf: 12429477 bytes, checksum: 6c4fb18057f55e648dbf338b43f67ee1 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄 I
圖目錄 V 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 文獻回顧 7 1.4 研究方法與步驟 13 1.5 論文總覽 15 第二章 先進高強度鋼板材料模型之探討 17 2.1 材料包辛格效應與加工硬化準則之探討 17 2.1.1 先進高強度鋼板之包辛格效應 18 2.1.2 考慮包辛格效應之非線性動態加工硬化準則探討 20 2.2 材料降伏準則之探討 23 2.2.1 Hill 48降伏準則之探討 23 2.2.2 Hill 90降伏準則之探討 27 2.2.3 Barlat 89及Barlat 91降伏準則之探討 30 2.2.4 適用之降伏準則探討 32 2.3 應用於有限元素法軟體之材料參數探討 35 2.3.1 Yoshida-Uemori 材料模型參數探討 36 2.3.2 Hill 48降伏準則材料參數之探討 38 2.3.3 Hill 90降伏準則材料參數之探討 39 2.3.4 Barlat 91降伏準則材料參數之探討 41 第三章 先進高強度鋼板反覆彎曲成形特性之研究 43 3.1 反覆彎曲與拉伸壓縮變形機制探討 43 3.2 三點式反覆彎曲實驗規劃與夾治具設計 46 3.2.1 三點式反覆彎曲實驗規劃 46 3.2.2 三點式反覆彎曲實驗夾治具設計重點 50 3.3 三點式反覆彎曲實驗 51 3.4 三點式反覆彎曲CAE分析與驗證 57 3.4.1 三點式反覆彎曲CAE分析模式之建立 58 3.4.2 三點式反覆彎曲CAE分析之作動方式比較 60 3.4.3 三點式反覆彎曲實驗之CAE分析 63 第四章 現有雙軸拉伸夾治具機構之改良 71 4.1 現有雙軸實驗夾治具機構介紹 72 4.1.1 現有雙軸夾治具機構(第一版) 72 4.1.2 現有雙軸夾治具機構(第二版) 75 4.2 雙軸夾治具機構CAE分析 79 4.2.1 雙軸夾治具機構模擬分析(第一版) 79 4.2.2 雙軸夾治具機構模擬分析(第二版) 82 4.3 雙軸夾治具機構製作、測試與改良 83 4.3.1 雙軸夾治具機構製作 84 4.3.2 雙軸夾治具機構拉伸測試 90 4.3.3 雙軸夾治具機構之修正與改良 98 第五章 雙軸拉伸試片設計與分析 107 5.1 雙軸拉伸試片之設計目標 107 5.2 雙軸拉伸試片造型設計與CAE分析 108 5.2.1 十字形試片中央幾何形狀之比較 110 5.2.2 十字形試片臂寬之比較 117 5.2.3 十字形試片臂上有無溝槽之比較 122 5.2.4 十字形溝槽試片幾何參數之比較 127 5.2.5 符合實驗之十字形溝槽試片設計與分析 139 5.3 設計之雙軸拉伸試片變形模式分析 142 5.3.1 不同拉伸邊界條件之分析(位移控制) 143 5.3.2 不同拉伸邊界條件之分析(力量控制) 150 第六章 先進高強度鋼板雙軸降伏準則材料參數建立 153 6.1 雙軸向拉伸實驗之執行 153 6.1.1 雙軸拉伸實驗分析方法 153 6.1.2 雙軸向拉伸實驗之量測 157 6.1.3 雙軸夾治具機構之摩擦力探討與實驗 159 6.1.4 雙軸試片均勻變形驗證 170 6.1.5 雙軸向拉伸實驗 173 6.2 探討適合先進高強度鋼板在雙軸受力下之降伏準則 176 6.3 建立CAE降伏準則材料參數 180 第七章 先進高強度鋼板材料模型應用與驗證 182 7.1 基礎載具成形模擬分析與實驗驗證 182 7.1.1 V型載具模擬分析與實驗驗證 184 7.1.2 U形帽狀載具模擬分析與實驗驗證 188 7.2 業界汽車載具成形模擬分析與實驗驗證 191 7.2.1 汽車結構件後大樑厚度之比對驗證 192 7.2.2 汽車結構件後大樑逆向掃描成品之比對驗證 195 第八章 結論 197 參考文獻 199 | |
| dc.language.iso | zh-TW | |
| dc.subject | 材料模型 | zh_TW |
| dc.subject | 有限元素法分析 | zh_TW |
| dc.subject | 雙軸拉伸試片 | zh_TW |
| dc.subject | 雙軸拉伸試驗 | zh_TW |
| dc.subject | 先進高強度鋼板 | zh_TW |
| dc.subject | 反覆彎曲試驗 | zh_TW |
| dc.subject | 降伏準則 | zh_TW |
| dc.subject | 包辛格效應 | zh_TW |
| dc.subject | advanced high strength steel material model | en |
| dc.subject | biaxial stretching tests | en |
| dc.subject | cyclic reversed bending tests | en |
| dc.subject | yield criterion | en |
| dc.subject | biaxial specimen | en |
| dc.subject | Bauschinger effect | en |
| dc.subject | finite element analysis | en |
| dc.title | 先進高強度鋼板反覆彎曲與雙軸拉伸材料模型之研究 | zh_TW |
| dc.title | Material Models of Advanced High Strength Steel Sheets Under Cyclic Reversed Bending and Biaxial Stretching Deformation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 向四海,徐瑞坤,洪景華 | |
| dc.subject.keyword | 先進高強度鋼板,材料模型,包辛格效應,降伏準則,反覆彎曲試驗,雙軸拉伸試驗,雙軸拉伸試片,有限元素法分析, | zh_TW |
| dc.subject.keyword | advanced high strength steel material model,Bauschinger effect,yield criterion,cyclic reversed bending tests,biaxial stretching tests,biaxial specimen,finite element analysis, | en |
| dc.relation.page | 206 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 12.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
