Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61889
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳翰(Jia-Han Li)
dc.contributor.authorHsin-Hung Chengen
dc.contributor.author鄭信鴻zh_TW
dc.date.accessioned2021-06-16T13:17:23Z-
dc.date.available2023-12-31
dc.date.copyright2013-08-29
dc.date.issued2013
dc.date.submitted2013-07-28
dc.identifier.citationChapter 1
1.R. P. Feynman, “There's plenty of room at the bottom,” Engineering and Science 23, 22-23 (1960).
2.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 391, 667-669, (1998).
3.J. J. Baumberg, T. A. Kelf, Y Sugawara, S Pelfrey, M Adelsalam, PN Bartlett, AE Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metal Nanostructured Plasmonic Crystals, ” Nano Lett, 11, 2262-2267 (2005).
4.P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys, 62(1), 243-249, (1987).
5.S. C. Baker-Finch and K. R. Mclntosh, “Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells,” Prog. Photovolt: Res. Appl. 19(4), 406-416 (2011).
Chapter 2
1.M. Wolf, “Historical development of solar cell,” in solar cells, ed. C. E. Backus (New York: IEEE Press, 1976).
2.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog.Photovoltaics: Res. Appl. 21(1), 1-11 (2013).
3.D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. Berney Needleman and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,”Energy Environ. Sci. 5, 5874-5883 (2012).
4.O. E. Daif, E. Drouard, G. Gomard, A. Kamiski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. R. I. Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express 18, A293-A299 (2010).
5.H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968-970 (1983).
6.J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Gallium Arsenide Solar Cell Absorption Enhancement Using Whispering Gallery Modes of Dielectric Nanospheres,” IEEE J. Photovoltaics 2(2), 123-128 (2012).
7.B. Li, J. Liu, G. Xu, R. Lu, L. Feng, and J. Wu, “Development of pulsed laser deposition for CdS/CdTe thin film solar cells,” Appl. Phys. Lett. 101, 153903 (2012).
8.P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101, 231101 (2012).
9.J. Cao, Z. Zhan, L. Hou, Y. Long, P. Liu, and W. Mai, “Optical modeling of organic solar cells based on rubrene and C70,” Appl. Opt. 51, 5718-5723 (2012).
10.D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett. 100, 053901 (2012).
11.A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84, 19–69 (2004).
12.A. Polmanand, and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Mater. 11, 174-177 (2012).
13.S. C. Chiao, J. L. Zhou, and H. A. Macleod, “Optimized design of an antireflection coating for textured silicon solar cells,” Appl. Opt. 32, 5557-5560 (1993).
14.J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward Perfect Antireflection Coatings: Numerical Investigation,” Appl. Opt. 41, 3075-3083 (2002).
15.P. Singh, S. N. Sharma, and N. M. Ravindra, “Applications of porous silicon thin films in solar cells and biosensors,” JOM 62(6), 15-24 (2010).
16.Z. Xi, D. Yang, and D. Que, “Texturization of moncrystalline silicon with tribasic sodium phosphate,” Sol. Energy Mater. Sol. Cells 77(3) 255-263(2003).
17.D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, “An optimized texturing process for silicon solar cell substrates using TMAH,” Sol. Energy Mater. Sol. Cells 87(1-4), 725-732 (2005).
18.P. Papet, , O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319-2328 (2006).
19.S. Hayashi, T. Minemoto, H. Takakura, Y. Hamakawa, “Influence of texture feature size on spherical silicon solar cells,” Rare Metal 25(6), 115-120 (2006).
20.P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243-249 (1987).
21.S. C. Baker-Finch and K. R. Mclntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovoltaics: Res. Appl. 19(4), 406-416 (2011).
22.J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 41/42, 87-99 (1996).
23.J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991-1993 (1998).
24.L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117-233120 (2007).
25.Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969-7975 (2008).
26.H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida, and T. Nunoi, “Polycrystalline silicon solar cells with V-grooved surface,” Sol. Energy Mater. Sol. Cells 34(1-4), 219-225 (1994).
27.X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays,” Nano Lett. 4(11), 2223-2226(2004).
28.J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shapped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221-2227 (2011).
29.J. W. Leem, J.S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669-676 (2011).
30.Y. Hamakawa, ed., Thin-film Solar Cells: Next Generation Photovoltaics and Its Applications (Springer Verlag, Berlin Heidelberg, Germany, 2004).
31.K. R. Catchploe, and A. Polman, “Plasmonic solar cells,” Opt. Express. 16(26), 21793-21800 (2008).
32.H. A. Atwater, and A. Polman, “Plamonics for improved photovoltaic devices,” Nature Mater. 9(3), 205-213 (2010).
33.Y.-M. Yeh, Y.-S. Wang, and J.-H. Li, “Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate,” Opt. Express. 19(S2) , A80-A94 (2011).
34.H.-Y. Yang, S.-W. Chen, I.-B. Lin, and J.-H. Li, “Enhanced light trapping for the silver nanoparticles embedded in the silica layer atop the silicon substrate,” Published online in Appl. Phys. A 17 May (2013).
35.R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901-074907 (2009).
36.D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption inorganic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
37.L. Yang, Y. Xuan, and J. Tan, “Efficient optical absorption in thin-film solar cells,” Opt. Express 19(S5), A11665-A1174 (2011).
38.S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. LeRouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95, S57-S64 (2011).
39.R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma “Desing of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Advanced Materials 21(34), 3504–3509, (2009).
40.Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217-226 (2012).
41.S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys 109(7), 073105 (2011).
42.R. Xu, X. Wang, W. Liu, L. Song, X. Xu, A. Ji, F. Yang, and J. Li, “Optimization of the Dielectric Layer Thickness for Surface-Plasmon-Induced Light Absorption for Silicon Solar Cells,” J. J. Appl. Phys. 51(4), 042301(2012).
43.C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, W.-L.Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540-2544(2011).
44.P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
45.D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).
46.Y. A. Akimov and W. S. Koh, “Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells,” Plasmonics, 6(1), 155-161 (2011).
47.M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett., 11(2), 438–445, (2011).
48.E. Yablonovitch, 'Statistical ray optics,' J. Opt. Soc. Am. 72(7), 899-907 (1982)
49.M. Green, “Lambertian Light Trapping in Textured Solar Cells and Light-Emitting Diodes: Analytical Solutions,” Prog. Photovolt. Res. Appl. 10(4), 235-241 (2002).
50.P. Campbell and M. A. Green, “The Limiting Efficiency of Silicon Solar Cells under Concentrated Sunlight”, IEEE Trans. Electron Devices , ED-33(2), 234-239 (1986).
51.Z. Yu, A. Raman and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express, 18(S3), A366-A380 (2010).
52.Z. Yu, A. Raman and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” PNAS 107(41), 17491-17496 (2010).
53.D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett. 12, 214−218 (2012).
54.S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” Journal of Applied Physics 112, 101101 (2012).
55.E. Garnett, and P. Yang, “Light trapping in Silicon Nanowire Solar cells,” Nano Lett. 10(3), 1082-1087(2010).
56.M. Law, L. E. Greene, J.C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solarcells.” Nature Mater. 4, 455–459. (2005).
57.B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells.” J. Appl. Phys 97, 114302 (2005).
58.M.-C. Chen, Y.-L. Yang, S.-W. Chen, J.-H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511-517 (2013).
59.K. Vynck , M. Burresi, F. Riboli and D. S.Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).
60.M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen and D. S. Wiersma, “Two-dimensional disorder forbroadband, omnidirectional and polarization-insensitive absorption,” Opt. Express (in press), (2013).
61.J.-H. Li, S.-W. Chen, Y.-S. Wang, and Y.-M. Yeh, “Effect of Nanoparticle Distribution on Light Transmission through the Silicon Substrate,” Proceeding of IQEC/CLEO Pacific Rim, PP. 2153-2154, 28 August - 1 September 2011, Sydney, Australia.
62.J.-H. Li, S.-J. Wang, S.-P. Chang, Y.-M. Chang, and S.-J. Chen, “Numerical and experimental study of optical properties of grana under different wavelength light,” Plant Biology 2010, Abstract # P14018, 31 July – 4 August, 2010, Montréal, Canada.
Chapter 3
1.F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519-526 (2009).
2.G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. USA 103(5), 1215-1220 (2006).
3.M. Culha, D. Stokes and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert. Rev. Mol. Diagn. 3(5), 669-75 (2003).
4.W.-C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: Theory and simulations,” Opt. Express 16, 12726-12736 (2008).
5.K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: Experimental applications,” Opt. Express 16, 12737-12745 (2008).
6.Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionic Eng. 5(3), 239-246 (2008).
7.R Son, G Kim, A Kothapalli, M T Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086 (2007).
8.B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≦7) for array applications,” J. Phys. Chem. C 115, 4578-4583 (2011).
9.J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243-2249 (2011).
10.K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113-124 (2008).
11.H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576-1599 (2008).
12.M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors”, Chem. Rev. 108, 494-521 (2008).
13.E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties and applications,” Angew. Chem. Int. Ed. 43, 6042 (2004).
14.K. Kneipp, H. Kneipp , I. Itzkan , R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
15.N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14, 847-857 (2006).
16.W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film”, Phys. Rev. Lett. 92(10), 107401 (2004).
17.J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces”, Appl. Phys. Lett. 95, 141111 (2009).
18.T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study”, Phys. Rev. B 79, 245409 (2009).
19.K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates”, J. Raman Spectrosc. 41, 1106-1111 (2010).
20.H. Gao, J. Henzie, M. H. Lee, and T. W. Odom,, “Screening plasmonic materials using pyramidal gratings”, Proc. Natl. Acad. Sci. USA 105(51), 20146-20151 (2008).
21.J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals”, Nano Lett. 5(11), 2262-2267 (2005).
22.N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007).
23.D. Arbel and M. Orensteini, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16, 3114-3119 (2008).
24.E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).
25.Lumerical FDTD Solution, http://www.lumerical.com/.
26.E. Hecht, 'Optics', Fourth Edition, Addison-Wesley, 393-396 (2002).
Chapter 4
4.1
1.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012).
2.P. Campbell and M. A. Green, “Light trapping properties of pyramidal textured surfaces,” J. Appl. Phys. 62, 243-249 (1987).
3.A. Wang, J. Zhao, and M. A. Green, “24% efficient silicon solar cells,” Appl. Phys. Lett. 57(6), 602–604 (1990).
4.A. Hamel and A. Chibani, “Characterization of Texture Surface for Solar Cells,” J. Applied Sciences 10(3), 231-234 (2010).
5.S. C. Baker-Finch and K. R. Mclntosh, “Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells,” Prog. Photovolt: Res. Appl. 19(4), 406-416 (2011).
6.H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida and T. Nunoi, “Polycrystalline silicon solar cells with V-grooved surface,” Sol. Energy Mater. Sol. Cells. 34(1-4), 219-225 (1994).
7.P. Campbell, M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1-4), 369-357 (2001).
8.B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
9.Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969-7975 (2008).
10.J. Zhao, A. Wang, M. Green, and F. Ferrazza, “Novel 19.8% efficient ’honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991-1993 (1998).
11.S.-C. Chiao, J.-L. Zhou, and H. A. Macleod, “Optimized design of an antireflection coating for textured silicon solar cells,” Appl. Opt. 32(28), 5557-5560 (1993).
12.D. Thorp, P. Campbell, and S. R. Wenham, “Conformal films for light-trapping in thin silicon solar cells,” Prog. Photovolt. Res. Appl. 4(3), 205–224 (1996).
13.R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058-23065 (2009).
14.K. S. Nalwa and S. Chaudhary, “Design of light-trapping microscale-textured surfaces for efficient organic solar cells,” Opt. Express 18(5), 5168-5178 (2010).
15.C. Haase and H. Stiebig, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
16.K. E. Bean, “Anisotropic etching of silicon,” IEEE Trans.Electron Devices 25(10), 1185-1193 (1978).
17.N. Wilke, M. L. Reed, and A. Morrissey, “The evolution from convex corner undercut towards microneedle formation: theory and experimental verification,” J. Micromech. Microeng. 16, 808-814 (2006).
18.H.-H. Cheng, S.-W. Chen, Y.-Y. Chang, J.-Y. Chu, D.-Z. Lin, Y.-P. Chen, and J.-H. Li, “Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering,” Opt. Express19(22), 22125–22141 (2011).
19.E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).
4.2
1.S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature 488, 294-303 (2012).
2.M. Graetzel, R. A.J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304-312 (2012).
3.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20(1), 606–614 (2012).
4.P. Doshi, G. E. Jellison, A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt. 36, 7826-7837 (1997).
5.J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Devices 38, 1925-1934 (1991).
6.S.-C. Chiao, J.-L. Zhou, and H. A. Macleod, 'Optimized design of an antireflection coating for textured silicon solar cells,' Appl. Opt. 32(28), 5557-5560 (1993).
7.C. R. Baraona and H. W. Brandhorst, “V-grooved silicon solar cells,” in Proc. Eleventh IEEE Photovoltaic Specialists Conf. New York, 44-48, (1975).
8.S. Wenham, “Buried-contact silicon solar cells,” Prog. Photovolt. Res. Appl., 1, 3-10 (1993).
9.P. Campbell, M. A. Green, “light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243-249 (1987).
10.B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009).
11.Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969-7975 (2008).
12.V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells. 72(1-14), 291-298 (2002).
13.J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% efficient perl silicon solar cell: Recent improvements in high-efficiency silicon cell research, Sol. Energy Mater. Sol. Cells. 41(42), 87-99 (1996).
14.H.-H. Cheng, Y.-Y. Chang, J.-Y. Chu, D.-Z. Lin, Y.-P. Chen, and J.-H. Li, “Light trapping enhancements of inverted pytamidal structures with the tips for silicon solar cells,” Appl. Phys. Lett. 101,141113 (2012).
15.Lambda Research Corporation, http://lambdares.com/.
16.E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).
17.J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
18.“Reference solar spectral irradiance: Air Mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61889-
dc.description.abstract本研究探討應用在分子檢測領域之小尖針倒金字塔奈米電漿子結構及太陽能電池研究領域之微米抗反射結構。利用理論模擬、結構製作及光學量測方法來研究小尖針倒金字塔奈米電漿子結構及微米抗反射結構之物理行為。在分子檢測領域方面,小尖針倒金字塔奈米電漿子結構能夠獲得較佳的表面電漿效應及局部場增益。並且,在比較沒有小尖針的倒金字塔奈米電漿子結構時發現,具有小尖針倒金字塔奈米電漿子結構的增強表面電漿效應及局部場增益,皆存在於在倒金字塔內的小尖針結構周圍。本研究也進一步討論藉由改變小尖針結構的高度及角度時,亦獲得多樣貌的遠場輻射圖騰。在太陽能電池研究領域方面,小尖針倒金字塔微米抗反射結構能夠獲得較佳的抗反射效率。比較沒有小尖針的倒金字塔微米抗反射結構發現,入射光能夠藉由倒金字塔內的小尖針影響下,使入射光在結構內產生多次的反射,而且抗反射效率能夠提高3%到4%左右。最後,對於應用在分子檢測領域研究的結果得知,本研究所提出的結構可以被用來設計遠場輻射特徵的場增益表面增強拉曼散射結構。同時,對於應用在太陽能電池研究領域的結果發現,具有小尖針倒金字塔微米結構未來能應用在特殊場合之織狀化太陽能電池結構。zh_TW
dc.description.abstractApplying plasmonic inverted pyramidal nanostructures with the tips to molecular detection and applying inverted pyramidal microstructures with the tips to solar cells are studied. The simulation, fabrication, and measurement can be useful for describing physical explanations. For the plasmonic inverted pyramidal nanostructures with the tips, our proposed nanostructures with the tips can have stronger field enhancements. Compared with inverted pyramidal nanostructures without the tips, we found that the field enhancements are around the pits and far field radiation pattern can be varied by changing the tip height and tip tilt angle. For the anti-reflection inverted pyramidal microstructures with the tips, our proposed microstructures with the tips can increase the anti-reflection efficiency. Compared with inverted pyramidal microstructures without the tips, we found that the light of our proposed structure has more multiple reflection between different surfaces of the inverted pyramidal microstructures with the tips and the results show that reflectivity is 3% to 4% lower. Our study can be useful for the designing strong field enhancement plasmonic nanostructure with specific far field radiation properties and designing textured structures for solar cells in specific applications.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:17:23Z (GMT). No. of bitstreams: 1
ntu-102-D97525006-1.pdf: 6942865 bytes, checksum: d58f500755e6f86f8b97f3a9e13014c7 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝.....................................................i
中文摘要.................................................ii
Abstract.................................................iii
Statement of Contribution................................iv
Table of Contents........................................v
List of Figures..........................................ix
List of Tables...........................................xvi
Chapter 1 Introduction..................................1
1.1 Foreword............................................1
1.2 Motivation and Objectives of the Research...........3
1.3 Framework of Dissertation...........................5
1.4 References..........................................6
Chapter 2 Fundamental Concepts..........................7
2.1 Fundamental Background..............................7
2.2 Plasmonic Nanostructures Fundamental Background.....10
2.3 Ray Optics Fundamental Background...................11
2.4 Evaluation of Light Trapping Enhancements...........12
2.5 Conclusion..........................................13
2.6 References..........................................14
Chapter 3 Applying Inverted Pyramidal with the Tips to SERS.....................................................21
3.1 Inverted Pyramidal with Tip Nanostructures..........21
3.1.1 Introduction......................................21
3.1.2 Structure and Simulation Setup....................25
3.1.3 Results and Discussion............................28
3.1.3.1 Simulation Results and Discussions of Field
Enhancements and Directivities to 2D W-Shape Nanostructures...........................................28
3.1.3.2 Simulation Results and Discussions of Field
Enhancements and Directivities of 3D Inverted Pyramidal
Nanostructures with the Tip..............................31
3.1.3.3 Sample Preparations an Experimental Results.....32
3.1.4 Conclusion........................................39
3.1.5 References........................................40
3.2 Wave-Shape Grating and Flower-Shape Nanostructures..44
3.2.1 Wave-Shape Grating Nanostructures.................44
3.2.2 Conclusion........................................46
3.2.3 Flower-Shape Nanostructures.......................47
3.2.4 Conclusion........................................49
Chapter 4 Applying Inverted Pyramidal with the Tips to Solar Cells..............................................50
4.1 Inverted Pyramidal with Tips Microstructures........50
4.1.1 Introduction......................................50
4.1.2 Experiment and Simulation.........................52
4.1.2.1 Fabrication of Inverted Pyramidal with the Tips Microstructures..........................................52
4.1.2.2 Simulation of Light Trapping on the Microstructures..........................................55
4.1.3 Results and Discussion............................58
4.1.4 Conclusion........................................61
4.1.5 References........................................62
4.2 Design Tip Height, Angle, and Shape Microstructures.64
4.2.1 Introduction......................................64
4.2.2 Textured Structures with the Tips in the Inverted Pyramids.................................................66
4.2.3 Results and Discussion............................69
4.2.4 Conclusion........................................75
4.2.5 References........................................76
4.3 Angle-Resolved and Different Tip Microstructures....78
4.3.1 Introduction......................................78
4.3.2 Structure and Simulation Setup....................78
4.3.3 Results and Discussion............................81
4.3.4 Conclusion........................................85
4.3.5 References........................................86
Chapter 5 Conclusion and Future Work....................87
5.1 Conclusion..........................................87
5.2 Future Work.........................................89
Appendix A Experimental Techniques......................90
A.1 Plasma Enhanced Chemical Vapor Deposition...........90
A.2 Lithography.........................................91
A.2.1 Electron Beam Lithography.........................91
A.2.2 Photolithography..................................92
A.3 Reactive Ion Etching................................93
A.4 Electron Beam Evaporation...........................94
A.5 Surface Characterization............................95
A.5.1 Scanning Electron Microscope......................95
A.5.2 Atomic Force Microscope...........................96
A.6 Optical Analysis....................................97
A.6.1 Raman Microscope..................................97
A.6.2 Spectrophotometer.................................98
Vita.....................................................99
dc.language.isoen
dc.subject具有小尖針倒金字塔結構zh_TW
dc.subject表面增強拉曼散射zh_TW
dc.subject表面電漿zh_TW
dc.subject太陽能電池zh_TW
dc.subject光捕捉zh_TW
dc.subject次波長結構zh_TW
dc.subject奈米結構zh_TW
dc.subjectNanostructuresen
dc.subjectInverted Pyramidal with the Tips Structureen
dc.subjectSurface-Enhanced Raman Scatteringen
dc.subjectSurface Plasmonsen
dc.subjectSolar Cellsen
dc.subjectSubwavelength Structuresen
dc.subjectLight Trappingen
dc.title具有強場增益表面電漿及提高抗反射率之小尖針倒金字塔奈微米結構zh_TW
dc.titleInverted Pyramidal Nano/Microstructures with the Tip with Strong Surface Plasmons Field Enhancements and High Performance Anti-reflectanceen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee許文翰,薛承輝,皺慶福,楊啟榮,吳志偉
dc.subject.keyword具有小尖針倒金字塔結構,表面增強拉曼散射,表面電漿,太陽能電池,光捕捉,次波長結構,奈米結構,zh_TW
dc.subject.keywordInverted Pyramidal with the Tips Structure,Surface-Enhanced Raman Scattering,Surface Plasmons,Solar Cells,Light Trapping,Subwavelength Structures,Nanostructures,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2013-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved