請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李學智 | |
| dc.contributor.author | Nien-En Wu | en |
| dc.contributor.author | 吳念恩 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:17:04Z | - |
| dc.date.available | 2018-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | [1] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless personal commun., vol. 6, no. 3, pp. 311–335, Mar. 1998.
[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov.-Dec. 1999. [3] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998. [4] C.-N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity scaling in MIMO wireless systems under correlated fading,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 637–650, Mar. 2002. [5] H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2636–2647, Oct. 2003. [6] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502–513, Mar. 2000. [7] J. N. Laneman, D. N. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004. [8] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003. [9] M. Dohler and Y. Li, Cooperative communications: Hardware, channel and PHY. Wiley, 2010. [10] T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, “High-performance cooperative demodulation with decode-and-forward relays,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1427–1438, Jul. 2007. [11] Z. Ding, W. H. Chin, and K. K. Leung, “Distributed beamforming and power allocation for cooperative networks,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1817–1822, May 2008. [12] A. Bletsas, H. Shin, and M. Z. Win, “Outage optimality of opportunistic amplify-and-forward relaying,” IEEE Commun. Lett., vol. 11, no. 3, pp. 261–263, Mar. 2007. [13] ——, “Cooperative communications with outage-optimal opportunistic relaying,” IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3450–3460, Sep. 2007. [14] D. Michalopoulos and G. Karagiannidis, “Performance analysis of single relay selection in Rayleigh fading,” IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 3718–3724, Oct. 2008. [15] M. M. Fareed and M. Uysal, “On relay selection for decode-and-forward relaying,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3341–3346, Jul. 2009. [16] E. Beres and R. Adve, “Selection cooperation in multi-source cooperative networks,” IEEE Trans. Wireless Commun., vol. 7, no. 1, pp. 118–127, Jan. 2008. [17] K.-H. Liu, “A delay-bounded relaying diversity scheme in digital cooperative wireless networks,” in in Proc. IEEE Wireless Commun. and Networking Conf. (WCNC), Apr. 2010, pp. 1–6. [18] F. A. Onat, A. Adinoyi, Y. Fan, H. Yanikomeroglu, J. S. Thompson, and I. D. Marsland, “Threshold selection for SNR-based selective digital relaying in cooperative wireless networks,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4226–4237, Nov. 2008. [19] F. Onat, Y. Fan, H. Yanikomeroglu, and J. Thompson, “Asymptotic BER analysis of threshold digital relaying schemes in cooperative wireless systems,” IEEE Trans. Wireless Commun, vol. 7, no. 12, pp. 4938–4947, Dec. 2008. [20] F. A. Onat, Y. Fan, H. Yanikomeroglu, and H. V. Poor, “Threshold-based relay selection for detect-and-forward relaying in cooperative wireless networks,” EURASIP Journal on Wireless Commun. and Networking, vol. 2010, pp. 1–9, Apr. 2010. [21] Y. Fan, F. A. Onat, H. Yanikomeroglu, and H. V. Poor, “Threshold based distributed detection that achieves full diversity in wireless sensor networks,” in Proceedings of the Asilomar Conf. on Signals, Systems, and Computers, Oct. 2008, pp. 74–79. [22] I. Krikidis, J. Thompson, S. McLaughlin, and N. Goertz, “Amplify-and-forward with partial relay selection,” IEEE Commun. Lett., vol. 12, no. 4, pp. 235–237, Apr. 2008. [23] A. S. Ibrahim, A. K. Sadek, W. Su, and K. J. R. Liu, “Cooperative communications with relay-selection: When to cooperate and whom to cooperate with?” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2814–2827, Jul. 2008. [24] A. Bletsas, A. Khisti, D. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE J. Select. Areas Commun., vol. 24, no. 3, pp. 659–672, Mar. 2006. [25] K. J. Arrow, L. Pesotchinsky, and M. Sobel, “On partitioning a sample with binary-type questions in lieu of collecting observations,” J. Amer. Stat. Assoc., vol. 76, no. 374, pp. 402–409, Jun. 1981. [26] A. Cohen, M. Kam, and R. Conn, “Partitioning a sample using binary-type questions with ternary feedback,” IEEE Trans. Sys., Man, Cybernetics, vol. 25, no. 10, pp. 1405–1408, Oct. 1995. [27] X. Qin and R. Berry, “Opportunistic splitting algorithms for wireless networks,” in in Proc. IEEE INFOCOM, vol. 3, Mar. 2004, pp. 1662–1672. [28] V. Shah, N. B. Mehta, and R. Yim, “Splitting algorithms for fast relay selection: Generalizations, analysis, and a unified view,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1525–1535, Apr. 2010. [29] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information theoretic perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009. [30] M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans. Inform. Theory, vol. 54, no. 6, pp. 2515–2534, Jun. 2008. [31] Y. Liang, H. V. Poor, and S. Shamai, “Secure communication over fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2470–2492, Jun. 2008. [32] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1334–1387, 1975. [33] S. K. Leung-Yan-Cheong and M. E. Hellman, “The gaussian wire-tap channel,” OEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, Jul. 1978. [34] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless physical layer security via cooperating relays,” IEEE Trans. Signal Processing, vol. 58, no. 3, pp. 1875–1888, Mar. 2010. [35] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, “Coordinated multipoint transmission/reception techniques for LTE-advanced,” IEEE Wireless Commun., vol. 17, no. 3, pp. 26–34, Jun. 2010. [36] T. Duong, V. N. Q. Bao, and H.-J. Zepernick, “On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels,” IEEE Commun. Lett., vol. 13, no. 3, pp. 172–174, Mar. 2009. [37] K.-S. Hwang, Y.-C. Ko, and M.-S. Alouini, “Outage probability of cooperative diversity systems with opportunistic relaying based on decode-and-forward,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5100–5107, Dec. 2008. [38] S. S. Ikki and M. H. Ahmed, “Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection,” IEEE Trans. Commun., vol. 58, no. 1, pp. 68–72, Jan. 2010. [39] H. Chen, J. Liu, L. Zheng, C. Zhai, and Y. Zhou, “An improved selection cooperation scheme for decode-and-forward relaying,” IEEE Commun. Lett., vol. 14, no. 12, pp. 1143–1145, Dec. 2010. [40] S. Lee, M. Han, and D. Hong, “Average SNR and ergodic capacity analysis for opportunistic DF relaying with outage over rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2807–2812, Jun. 2009. [41] R. M. Radaydeh and M.-S. Alouini, “On the performance of arbitrary transmit selection for threshold-based receive MRC with and without co-channel interference,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3177–3191, Nov. 2011. [42] R. Radaydeh, “SNR and SINR-based selection combining algorithms in the presence of arbitrarily distributed co-channel interferers,” IET Commun., vol. 3, no. 1, pp. 57–66, Jan. 2009. [43] J.-B. Kim and D. Kim, “Exact and closed-form outage probability of opportunistic decode-and-forward relaying with unequal-power interferers,” IEEE Trans. Wireless Commun., vol. 9, no. 12, pp. 3601–3606, Dec. 2010. [44] D. Lee and J. H. Lee, “Outage probability of decode-and-forward opportunistic relaying in a multicell environment,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1925–1930, May 2011. [45] A. Bletsas, A. G. Dimitriou, and J. N. Sahalos, “Interference-limited opportunistic relaying with reactive sensing,” IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 14–20, Jan. 2010. [46] J. Si, Z. Li, and Z. Liu, “Outage probability of opportunistic relaying in Rayleigh fading channels with multiple interferers,” IEEE Signal Process. Lett., vol. 17, no. 5, pp. 445–448, May 2010. [47] M. Daghfous, R. M. Radaydeh, and M. Alouini, “Performance of adaptive MSGSC in the presence of cochannel interference,” IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2829–2837, Jul. 2011. [48] J. P. Pena-Martin, J. M. Romero-Jerez, G. Aguilera, and A. J. Goldsmith, “Performance comparison of MRC and IC under transmit diversity,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2484–2493, May 2009. [49] J. M. Romero-Jerez and A. J. Goldsmith, “Receive antenna array strategies in fading and interference: An outage probability comparison,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 920–932, Mar. 2008. [50] H. Shin and M. Z. Win, “MIMO diversity in the presence of double scattering,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 2976–2996, Jul. 2008. [51] H. Chen, J. Liu, L. Zheng, C. Zhai, and Y. Zhou, “Approximate SEP analysis for DF cooperative networks with opportunistic relaying,” IEEE Signal Process. Lett., vol. 17, no. 9, pp. 779–782, Sept. 2010. [52] K. S. Ahn, “Performance analysis of MIMO-MRC systems with channel estimation error in the presence of cochannel interferences,” IEEE Signal Process. Lett., vol. 15, pp. 445–448, 2008. [53] Z. Wang and G. B. Giannakis, “A simple and general parameterization quantifying performance in fading channels,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1389–1398, Aug. 2003. [54] H. Yu, I.-H. Lee, and G. L. Stuber, “Outage probability of decode-and-forward cooperative relaying systems with co-channel interference,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 266–274, Jan. 2012. [55] I. Krikidis, J. Thompson, S. McLaughlin, and N. Goertz, “Max-min relay selection for legacy amplify-and-forward systems with interference,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3016–3027, Jun. 2009. [56] H. A. Suraweera, M. Soysa, C. Tellambura, and H. K. Garg, “Performance analysis of partial relay selection with feedback delay,” IEEE Signal Processing Lett., vol. 17, no. 6, pp. 531–534, Jun. 2010. [57] D. Lee and J. H. Lee, “Outage probability for dual-hop relaying systems with multiple interferers over Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 333–338, Jan. 2011. [58] C. Zhong, S. Jin, and K.-K. Wong, “Dual-hop systems with noisy relay and interference-limited destination,” IEEE Trans. Commun., vol. 58, no. 3, pp. 764–768, Mar. 2010. [59] D. Benevides da Costa, H. Ding, and J. Ge, “Interference-limited relaying transmissions in dual-hop cooperative networks over Nakagami-m fading,” IEEE Commun. Lett., vol. 15, no. 5, pp. 503–505, May 2011. [60] D. Benevides da Costa and M. D. Yacoub, “Dual-hop DF relaying systems with multiple interferers and subject to arbitrary Nakagami-m fading,” IET Electron. Lett., vol. 47, no. 17, pp. 999–1001, Aug. 2011. [61] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Academic Press, 2007. [62] Y. Ma, Z. Wang, and S. Pasupathy, “Asymptotic performance of hybrid-selection/maximal-ratio combining over fading channels,” IEEE Trans. Commun., vol. 54, no. 5, pp. 770–777, May 2006. [63] L. T. Berger, T. E. Kolding, J. Ramiro-Moreno, P. Ameigeiras, L. Schumacher, and P. E. Mogensen, “Interaction of transmit diversity and proportional fair scheduling,” in Proc. 57th IEEE Vehicular Technology Conf. (VTC), vol. 4, Apr. 2003, pp. 2423–2427. [64] M. K. Simon and M.-S. Alouini, Digital communication over fading channels. New York: Wiley, 2005. [65] M. Mckay, A. Zanella, I. Collings, and M. Chiani, “Error probability and SINR analysis of optimum combining in Rician fading,” IEEE Trans. Commun., vol. 57, no. 3, pp. 676–687, Mar. 2009. [66] M. Seyfi, S. Muhaidat, and J. Liang, “Performance analysis of relay selection with feedback delay and channel estimation errors,” IEEE Signal Processing Lett., vol. 18, no. 1, pp. 67–70, Jan. 2011. [67] Y. Ma, D. Zhang, A. Leith, and Z. Wang, “Error performance of transmit beamforming with delayed and limited feedback,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1164–1170, Mar. 2009. [68] D. S. Michalopoulos, N. D. Chatzidiamantis, R. Schober, and G. K. Karagiannidis, “The diversity potential of relay selection with practical channel estimation,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 481–493, Feb. 2013. [69] T. R. Ramya and S. Bhashyam, “Using delayed feedback for antenna selection in MIMO systems,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 6059–6067, Dec. 2009. [70] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic, 2007. [71] J. L. Vicario, A. Bel, J. A. Lopez-Salcedo, and G. Seco, “Opportunistic relay selection with outdated CSI: Outage probability and diversity analysis,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2872–2876, Jun. 2009. [72] M. Torabi and D. Haccoun, “Capacity analysis of opportunistic relaying in cooperative systems with outdated channel information,” IEEE Commun. Lett., vol. 14, no. 12, pp. 1137–1139, Dec. 2010. [73] D. S. Michalopoulos, H. A. Suraweera, G. K. Karagiannidis, and R. Schober, “Amplify-and-forward relay selection with outdated channel state information,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–6. [74] H. A. Suraweera, T. A. Tsiftsis, G. K. Karagiannidis, and A. Nallanathan, “Effect of feedback delay on amplify-and-forward relay networks with beamforming,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1265–1271, Mar. 2011. [75] M. Soysa, H. A. Suraweera, C. Tellambura, and H. K. Garg, “Multiuser amplify-and-forward relaying with delayed feedback in Nakagami-m fading,” in IEEE Wireless Commun. and Networking Conf. (WCNC), Mar. 2011, pp. 1724–1729. [76] C. Yang, W. Wang, S. Chen, and M. Peng, “Outage performance of opportunistic decode-and-forward cooperation with imperfect channel state information,” IEICE Trans. Commun., vol. E93-B, no. 11, pp. 3083–3092, Nov. 2010. [77] D. S. Michalopoulos, N. D. Chatzidiamantis, R. Schober, and G. Karagiannidis, “Relay selection with outdated channel estimates in Nakagami-m fading,” in IEEE Intl. Conf. on Commun. (ICC),, Jun. 2011, pp. 1–6. [78] S. Kim, S. Park, H. Min, and D. Hong, “Average SNR and ergodic capacity of reactive DF relaying system with outdated channel state information,” in IEEE Intl. Conf. on Commun. (ICC), Jun. 2011, pp. 1–5. [79] D. I. Kim, L. B. Le, and E. Hossain, “Joint rate and power allocation for cognitive radios in dynamic spectrum access environment,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5517–5527, Dec. 2008. [80] S. S. Ikki and S. Aissa, “Multihop wireless relaying systems in the presence of cochannel interferences: Performance analysis and design optimization,” IEEE Trans. Veh. Tech., vol. 61, no. 2, pp. 566–573, Feb. 2012. [81] J. Chen, J. Si, Z. Li, and H. Huang, “On the performance of spectrum sharing cognitive relay networks with imperfect CSI,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1002–1005, Jul. 2012. [82] A. Shah and A. Haimovich, “Performance analysis of maximal ratio combining and comparison with optimum combining for mobile radio communications with cochannel interference,” IEEE Trans. Veh. Technol., vol. 49, no. 4, pp. 1454–1463, Jul. 2000. [83] W. Xu, J. Zhang, P. Zhang, and C. Tellambura, “Outage probability of decode-and-forward cognitive relay in presence of primary user’s interference,” IEEE Commun. Lett., vol. 16, no. 8, pp. 1252–1255, Aug. 2012. [84] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic, 2007. [85] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. 144 [86] Z. Ding, K. K. Leung, D. L. Goeckel, and D. Towsley, “Opportunistic relaying for secrecy communications: Cooperative jamming vs. relay chatting,” IEEE Trans. Wireless Commun., vol. 10, no. 6, pp. 1725–1729, Jun. 2011. [87] I. Krikidis, J. Thompson, and S. McLaughlin, “Relay selection for secure cooperative networks with jamming,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5003–5011, Oct. 2009. [88] J. Chen, R. Zhang, L. Song, Z. Han, and B. Jiao, “Joint relay and jammer selection for secure two-way relay networks,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 1, pp. 310–320, Feb. 2012. [89] Z. Ding, M. Xu, J. Lu, and F. Liu, “Improving wireless security for bidirectional communication scenarios,” IEEE Trans. Veh. Technol., vol. 61, no. 6, pp. 2842–2848, Jul. 2012. [90] K.-S. Hwang, Y.-C. Ko, and M.-S. Alouini, “Performance analysis of incremental opportunistic relaying over identically and non-identically distributed cooperative paths,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1953–1961, Apr. 2009. [91] S. S. Ikki and M. H. Ahmed, “Performance analysis of cooperative diversity with incremental-best-relay technique over Rayleigh fading channels,” IEEE Trans. Commun., vol. 59, no. 8, pp. 2152–2161, Aug. 2011. [92] J. L. Vicario and C. Anton-Haro, “Analytical assessment of multi-user vs. spatial diversity trade-offs with delayed channel state information,” IEEE Commun. Lett., vol. 10, no. 8, pp. 588–590, Aug. 2006. [93] H. A. Suraweera, P. J. Smith, and M. Shafi, “Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1811–1822, May 2010. [94] H. Kim, H. Wang, S. Lim, and D. Hong, “On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 284–295, Jan. 2012. [95] H. Ding, J. Ge, D. Benevides da Costa, and Z. Jiang, “Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 457–472, Feb. 2011. [96] V. Shah, N. B. Mehta, and R. Yim, “The relay selection and transmission trade-off in cooperative communication systems,” IEEE Trans. Wireless Commun., vol. 9, no. 8, pp. 2505–2515, Aug. 2010. [97] V. Shah, N. B. Mehta, and D. Bethanabhotla, “Performance of a fast, distributed multiple access based relay selection algorithm under imperfect statistical knowledge,” IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3516–3527, Oct. 2011. [98] H. Nam and M. Alouini, “Effect of threshold quantization in opportunistic splitting algorithm,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1394–1397, Dec. 2011. [99] I. Krikidis, J. Thompson, S. McLaughlin, and N. Goertz, “Amplify-and-forward with partial relay selection,” IEEE Commun. Lett., vol. 12, no. 4, pp. 235–237, Apr. 2008. [100] J. Yuan, Z. Chen, Y. Li, and L. Chu, “Distributed space-time trellis codes for a cooperative system,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 4897–4905, Oct. 2009. [101] N.-E. Wu, W.-C. Huang, and H.-J. Li, “A novel relay selection algorithm for relaying networks,” in in Proc. 70th IEEE Veh. Technol. Conf. (VTC 2009-Fall), Sept. 2009, pp. 1–5. [102] S. M. Ross, Introduction to probability models. Academic press, 2006. [103] G. W. Hanson and A. B. Yakovlev, Operator theory for electromagnetics: an introduction. Springer Verlag, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61882 | - |
| dc.description.abstract | 為了達到無線網路下高傳輸率與高服務品質的需求,協同式通訊被視為大有可為的新興技術。在具有多中繼節點的協同式網路下,中繼選取技術擁有許多吸引人的優勢,例如可放寬節點間所需的協調、高頻譜使用效率,以及完整的空間上多樣性。此論文探討關於中繼選取技術的兩個重要議題:“中繼選取技術在不完美通訊環境下的效能如何?”以及“實際上如何實現中繼選取技術?”。更明確地說,我們將從理論效能分析與實務上實現機制的角度來探討中繼選取技術。
在雙跳躍解碼前送協同式網路下,投機式轉傳(Opportunistic relaying)與選擇式合作(Selection cooperation) 為最主要的兩種中繼選取技術。在投機式轉傳技術中,中繼選取是基於雙跳躍的中繼通道路徑並且是在傳送端開始傳送前完成。而在選擇式合作技術中,中繼選取是基於第二次跳躍的通道路徑並且是在傳送端開始傳送之後完成。在現實的無線網路中,同頻干擾(Co-channel interference) 與過時通道資訊(Outdated channel state information) 可能會發生且造成效能上的衰減。在此論文的第一部分,我們提出一個用於廣泛地探討同頻干擾與過時通道資訊對於中繼選取效能的影響之分析架構,其衡量效能的準則為符元錯誤率(Symbol error probability) 或中斷機率(Outage probability)。在同頻干擾影響下,我們討論投機式轉傳架構下兩種中繼選取的方式,分別為基於訊號雜訊比與基於訊號干擾雜訊比。而在過時通道資訊下,我們比較投機式轉傳與選擇式合作這兩種技術。理論結果證明以可達到的多樣性階級而言,相較於同頻干擾,中繼選取較易受到過時通道資訊的影響。最後,在同頻干擾與(或) 過時通道資訊的情況下,我們探討三種特別受到矚目的無線中繼轉傳之應用:感知中繼網路、安全協同式網路與漸進式中繼網路。 在此論文的第二部分,為了在無集中式實體的情況下於實務上實現中繼選取,我們分析一個分散式基於分割的(Decentralized splitting-based)選取機制。在分散式基於分割的中繼選取架構中,每個中繼點根據它的通道增益與一個預先定義的門檻值來局部地決定是否要傳送旗標訊號。依照此方法,擁有較差通道增益的中繼點將被排除,而不用依賴集中式實體來尋找最佳中繼點。我們藉由探討該預先定義門檻值的影響,從實用性與效率的角度來討論這個分散式基於分割的方法,對應的效能評量標準為平均搜尋的時間。我們推導保證能在有限搜尋時間內尋找到最佳中繼點的門檻值設計準則,也提供可使得平均搜尋時間漸進性與中繼點數目無關的門檻值設計準則。 | zh_TW |
| dc.description.abstract | Cooperative communication is a promising technique proposed to meet the increasingly high rate demands and quality of service requirements in wireless networks. In multi-relay cooperative networks, relay selection offers several attractive benefits such as relaxation of inter-node coordination, high spectral efficiency, and full spatial diversity. In this dissertation, we address two fundamental issues on relay selection, namely,“how relay selection performs in imperfect communication environments?”and “how to select the best relay in practice?”. More specifically, we investigate relay selection from the perspectives of theoretical performance analysis and practical implementation mechanism.
Opportunistic relaying (OR) and selection cooperation (SC) are two major relay selection schemes for dual-hop decode-and-forward cooperative networks. In OR, the relay selection is performed based on the metrics of the dual-hop relaying paths before the source transmissions. In SC, on the other hand, the best relay is selected by using the metrics of the second-hop paths after the source transmissions. In practical wireless networks, co-channel interference (CCI) and outdated channel state information (CSI) may occur and cause performance degradation. In the first part of this dissertation, we provide an analytical framework for comprehensively studying the effect of CCI and outdated CSI on the performance of relay selection. Important performance metrics such as symbol error probability or outage probability of relay selection are examined under CCI or outdated CSI. Specifically, in the presence of CCI, we study OR with signal-to-noise ratio-based and signal-to- interference-plus-noise ratio-based selection criteria. In the scenarios with outdated CSI, we analytically compare OR and SC. The theoretical results show that relay selection is more susceptible to outdated CSI than CCI in terms of the achievable diversity order. Finally, three wireless relaying applications of particular interest, specifically, cognitive relaying networks, secure cooperative networks, and incremental relaying networks are investigated under CCI and/or outdated CSI. In the second part, we discuss and analyze a decentralized splitting-based (DSB) selection mechanism for practical implementation of relay selection without the existence of a centralized entity. Particularly, in the DSB relay selection scheme, each relay decides locally whether or not to transmit according to its own metric and a pre-defined threshold. In this way, relays with poorer metrics are excluded and the best relay is determined without the need of a centralized entity. We study the DSB method from perspectives of utility and efficiency by examining the effect of the pre-defined threshold with average searching time as the relevant performance metric. We derive the criteria of the threshold, which guarantee the determination of the best relay within finite searching time. The threshold criterion under which the average searching time is asymptotically irrelevant to the number of relays is also provided. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:17:04Z (GMT). No. of bitstreams: 1 ntu-102-F95942033-1.pdf: 1193182 bytes, checksum: c6f0449d5a450df78ea24de7e9c0934b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v Contents vii List of Figures xi List of Abbreviations xv List of Important Symbols xvii 1 Introduction 1 1.1 Basic Background of Cooperative Systems . . . . . . . . . . . . . . . 2 1.1.1 Relaying Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Relay Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Opportunistic Relaying . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Selection Cooperation . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Partial Relay Selection . . . . . . . . . . . . . . . . . . . . . . 8 1.2.4 Implementation of Relay Selection . . . . . . . . . . . . . . . 8 1.3 Applications with Relaying Networks . . . . . . . . . . . . . . . . . . 10 1.3.1 Cognitive Relaying Networks . . . . . . . . . . . . . . . . . . 10 1.3.2 Secure Cooperative Networks . . . . . . . . . . . . . . . . . . 11 1.3.3 Incremental Relaying Networks . . . . . . . . . . . . . . . . . 11 1.4 Imperfect Communication Environments . . . . . . . . . . . . . . . . 12 1.5 Motivation, Thesis Outline, and Contributions . . . . . . . . . . . . . 12 1.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Performance Analysis of Relay Selection in the Presence of Co-Channel Interference 17 2.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 System Complexity . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Asymptotic Outage Probability . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Asymptotic OP for the SNR-based OR . . . . . . . . . . . . . 25 2.3.2 Asymptotic OP for the SINR-based OR . . . . . . . . . . . . 28 2.3.3 SNR-based OR versus SINR-based OR . . . . . . . . . . . . . 29 2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Performance Analysis of Relay Selection under Outdated Channel State Information 49 3.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.1 Transmission Protocol of OR . . . . . . . . . . . . . . . . . . 53 3.1.2 Transmission Protocol of TSC . . . . . . . . . . . . . . . . . . 54 3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.1 ASEP of OR . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.2 ASEP of TSC . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Asymptotic Behavior and Diversity Order Analysis . . . . . . . . . . 59 3.3.1 Asymptotic Behavior of OR . . . . . . . . . . . . . . . . . . . 60 3.3.2 Asymptotic Behavior of TSC . . . . . . . . . . . . . . . . . . 62 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Applications with Relaying Networks 75 4.1 Cognitive Relaying Networks . . . . . . . . . . . . . . . . . . . . . . 75 4.1.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 79 4.1.3 Asymptotic Outage Probability . . . . . . . . . . . . . . . . . 81 4.1.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Secure Cooperative Networks . . . . . . . . . . . . . . . . . . . . . . 84 4.2.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 88 4.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3 Incremental Relaying Networks . . . . . . . . . . . . . . . . . . . . . 95 4.3.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.2 ASEP Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5 Decentralized Splitting-Based Relay Selection Algorithm 111 5.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2 Concept of the DSB Method . . . . . . . . . . . . . . . . . . . . . . . 114 5.3 Analysis of the DSB Method . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.1 Utility of the DSB method . . . . . . . . . . . . . . . . . . . . 118 5.3.2 Efficiency of the DSB method . . . . . . . . . . . . . . . . . . 119 5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Conclusions and Future Work 131 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Bibliography 135 | |
| dc.language.iso | en | |
| dc.subject | 協同式通訊 | zh_TW |
| dc.subject | 中繼選取 | zh_TW |
| dc.subject | 效能分析 | zh_TW |
| dc.subject | Cooperative communication | en |
| dc.subject | Relay selection | en |
| dc.subject | Performance analysis | en |
| dc.title | 協同式無線網路下中繼選取技術之效能分析 | zh_TW |
| dc.title | Performance Analysis of Relay Selection in Cooperative Wireless Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蘇育德,林信標,蘇炫榮,李啟民,謝宏昀 | |
| dc.subject.keyword | 協同式通訊,中繼選取,效能分析, | zh_TW |
| dc.subject.keyword | Cooperative communication,Relay selection,Performance analysis, | en |
| dc.relation.page | 147 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
