請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61877完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾麗慧(L-H Tseng) | |
| dc.contributor.author | Chia-Chien Chen | en |
| dc.contributor.author | 陳佳倩 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:16:51Z | - |
| dc.date.available | 2013-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | 1. Nemer, M., Genetic insights into normal and abnormal heart development. Cardiovascular Pathology, 2008. 17(1): p. 48-54.
2. Bruneau, B.G., The developmental genetics of congenital heart disease. Nature, 2008. 451(7181): p. 943-948. 3. Rao, P.S., Congenital Heart Defects – A Review, Congenital Heart Disease - Selected Aspects. 2012. 4. Barnett, S.B., et al., International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol, 2000. 26(3): p. 355-66. 5. Levi, S., Mass screening for fetal malformations: the Eurofetus study. Ultrasound Obstet Gynecol, 2003. 22(6): p. 555-8. 6. Abuhamad, A.Z., et al., The accreditation of ultrasound practices: impact on compliance with minimum performance guidelines. J Ultrasound Med, 2004. 23(8): p. 1023-9. 7. Meyer-Wittkopf, M., S. Cooper, and G. Sholler, Correlation between fetal cardiac diagnosis by obstetric and pediatric cardiologist sonographers and comparison with postnatal findings. Ultrasound Obstet Gynecol, 2001. 17(5): p. 392-7. 8. Kleinert, S., Routine prenatal screening for congenital heart disease. Lancet, 1996. 348(9031): p. 836. 9. International Society of Ultrasound in, O. and Gynecology, Cardiac screening examination of the fetus: guidelines for performing the 'basic' and 'extended basic' cardiac scan. Ultrasound Obstet Gynecol, 2006. 27(1): p. 107-13. 10. Allan, L., et al., Isolated major congenital heart disease. Ultrasound Obstet Gynecol, 2001. 17(5): p. 370-9. 11. Ogge, G., et al., Prenatal screening for congenital heart disease with four-chamber and outflow-tract views: a multicenter study. Ultrasound Obstet Gynecol, 2006. 28(6): p. 779-84. 12. Vergani, P., et al., Screening for congenital heart disease with the four-chamber view of the fetal heart. Am J Obstet Gynecol, 1992. 167(4 Pt 1): p. 1000-3. 13. Carvalho, J.S., et al., Improving the effectiveness of routine prenatal screening for major congenital heart defects. Heart, 2002. 88(4): p. 387-91. 14. Sklansky, M.S., et al., Prenatal screening for major congenital heart disease: superiority of outflow tracts over the 4-chamber view. J Ultrasound Med, 2009. 28(7): p. 889-99. 15. Weissmann-Brenner, A., et al., Fetal Echocardiography: The Four-Chamber View, the Outflow Tracts, and the Contribution of the Cardiac Arches. Ultrasound Clinics, 2012. 7(1): p. 1-13. 16. Oztarhan, K., et al., Prevalence and distribution of congenital abnormalities in Turkey: differences between the prenatal and postnatal periods. Congenit Anom (Kyoto), 2010. 50(4): p. 221-5. 17. Yagel, S., et al., Congenital heart defects: natural course and in utero development. Circulation, 1997. 96(2): p. 550-5. 18. Pierpont, M.E., et al., Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation, 2007. 115(23): p. 3015-38. 19. Lin, A.E. and H.H. Ardinger, Genetic epidemiology of cardiovascular malformations. Progress in Pediatric Cardiology, 2005. 20(2): p. 113-126. 20. FERENCZ, C., et al., CONGENITAL HEART DISEASE: PREVALENCE AT LIVEBIRTH THE BALTIMORE-WASHINGTON INFANT STUDY. American Journal of Epidemiology, 1985. 121(1): p. 31-36. 21. Blue, G.M., et al., Congenital heart disease: current knowledge about causes and inheritance. Med J Aust, 2012. 197(3): p. 155-159. 22. Carey, J.C., Trisomy 18 and Trisomy 13 Syndromes, in Management of Genetic Syndromes. 2005, John Wiley & Sons, Inc. 23. Papp, C., et al., Prenatal diagnosis of trisomy 13: analysis of 28 cases. J Ultrasound Med, 2006. 25(4): p. 429-35. 24. Pajkrt, E., et al., Fetal cardiac anomalies and genetic syndromes. Prenat Diagn, 2004. 24(13): p. 1104-15. 25. Buendia Hernandez, A., et al., [Chromosome 22 (22q.11.2) deletion. Etiology of conotruncal heart abnormalities]. Arch Inst Cardiol Mex, 2000. 70(2): p. 148-53. 26. von Kaisenberg, C.S., et al., Fetal transabdominal anatomy scanning using standard views at 11 to 14 weeks' gestation. Am J Obstet Gynecol, 2005. 192(2): p. 535-42. 27. Dugoff, L., Ultrasound diagnosis of structural abnormalities in the first trimester. Prenat Diagn, 2002. 22(4): p. 316-20. 28. Souka, A.P., et al., Assessment of fetal anatomy at the 11-14-week ultrasound examination. Ultrasound Obstet Gynecol, 2004. 24(7): p. 730-4. 29. Salomon, L.J., et al., Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol, 2011. 37(1): p. 116-26. 30. Nicolaides, K.H., R.J. Snijders, and H.S. Cuckle, Correct estimation of parameters for ultrasound nuchal translucency screening. Prenat Diagn, 1998. 18(5): p. 519-23. 31. Geipel, A., et al., Nuchal fold thickness, nasal bone absence or hypoplasia, ductus venosus reversed flow and tricuspid valve regurgitation in screening for trisomies 21, 18 and 13 in the early second trimester. Ultrasound Obstet Gynecol, 2010. 35(5): p. 535-9. 32. Bulletins, A.C.o.P., ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol, 2007. 109(1): p. 217-27. 33. Wapner, R.J., Chorionic villus sampling. Obstet Gynecol Clin North Am, 1997. 24(1): p. 83-110. 34. Cederholm, M. and O. Axelsson, A prospective comparative study on transabdominal chorionic villus sampling and amniocentesis performed at 10-13 week's gestation. Prenat Diagn, 1997. 17(4): p. 311-7. 35. Nicolaides, K.H., Turning the pyramid of prenatal care. Fetal Diagn Ther, 2011. 29(3): p. 183-96. 36. Lichtenbelt, K.D., N.V. Knoers, and G.H. Schuring-Blom, From karyotyping to array-CGH in prenatal diagnosis. Cytogenet Genome Res, 2011. 135(3-4): p. 241-50. 37. Sagoo, G.S., et al., Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects. Genet Med, 2009. 11(3): p. 139-46. 38. Hochstenbach, R., et al., Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet, 2009. 52(4): p. 161-9. 39. Schmid, M., et al., Prenatal genetic diagnosis using microarray analysis in fetuses with congenital heart defects. Prenat Diagn, 2012. 32(4): p. 376-82. 40. Ylstra, B., et al., BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res, 2006. 34(2): p. 445-50. 41. Miller, D.T., et al., Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet, 2010. 86(5): p. 749-64. 42. Samanek, M., et al., Prevalence, treatment, and outcome of heart disease in live-born children: a prospective analysis of 91,823 live-born children. Pediatr Cardiol, 1989. 10(4): p. 205-11. 43. Paladini, D., et al., Prenatal diagnosis of congenital heart disease in the Naples area during the years 1994-1999 -- the experience of a joint fetal-pediatric cardiology unit. Prenat Diagn, 2002. 22(7): p. 545-52. 44. Menahem, S. and J. Grimwade, Pregnancy termination following prenatal diagnosis of serious heart disease in the fetus. Early Hum Dev, 2003. 73(1-2): p. 71-8. 45. Zhu, R.Y., et al., [Fetal echocardiography in diagnosing congenital heart disease prenatally: a multicenter clinical study]. Zhonghua Er Ke Za Zhi, 2006. 44(10): p. 764-9. 46. Bristow, J.D. and H.S. Bernstein, Counseling families with chromosome 22q11 deletions: the catch in CATCH-22. J Am Coll Cardiol, 1998. 32(2): p. 499-501. 47. Gill, H.K., et al., Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J Am Coll Cardiol, 2003. 42(5): p. 923-9. 48. Ananaba, I.E., J.Y. Hare, and W.J. Franklin, The pregnant patient with congenital heart disease. Methodist Debakey Cardiovasc J, 2011. 7(2): p. 9-12. 49. Iserin, L., et al., Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr, 1998. 157(11): p. 881-4. 50. Boudjemline, Y., et al., Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects: a 6-year prospective study. J Pediatr, 2001. 138(4): p. 520-4. 51. Schiaffino, S., B. Dallapiccola, and R. Di Lisi, Molecular genetics of congenital heart disease. A problem of faulty septation. Circ Res, 1999. 84(2): p. 247-9. 52. Kashork, C., A. Theisen, and L. Shaffer, Prenatal Diagnosis Using Array CGH, in Prenatal Diagnosis, S. Hahn and L. Jackson, Editors. 2008, Humana Press. p. 59-70. 53. Soto, B., et al., Classification of ventricular septal defects. Br Heart J, 1980. 43(3): p. 332-43. 54. Roguin, N., et al., High prevalence of muscular ventricular septal defect in neonates. J Am Coll Cardiol, 1995. 26(6): p. 1545-8. 55. Ware, S.M., et al., Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet, 2004. 74(1): p. 93-105. 56. Digilio, M.C., et al., Chromosome 22q11 microdeletion and isolated conotruncal heart defects. Arch Dis Child, 1997. 76(1): p. 79-80. 57. Dana, M. and V. Stoian, Association of pericentric inversion of chromosome 9 and infertility in romanian population. Maedica (Buchar), 2012. 7(1): p. 25-9. 58. Demirhan, O., et al., Correlation of clinical phenotype with a pericentric inversion of chromosome 9 and genetic counseling. Saudi Med J, 2008. 29(7): p. 946-51. 59. Yeo, L., et al., Prenatal detection of fetal trisomy 18 through abnormal sonographic features. J Ultrasound Med, 2003. 22(6): p. 581-90; quiz 591-2. 60. Strehle, E.M., et al., The 4q-Syndrome. Genet Couns, 2001. 12(4): p. 327-39. 61. Strehle, E.-M., et al., Genotype–phenotype analysis of 4q deletion syndrome: Proposal of a critical region. American Journal of Medical Genetics Part A, 2012. 158A(9): p. 2139-2151. 62. Strehle, E.M. and H.M. Bantock, The phenotype of patients with 4q-syndrome. Genet Couns, 2003. 14(2): p. 195-205. 63. Xu, W., et al., Chromosome 4q deletion syndrome: Narrowing the cardiovascular critical region to 4q32.2–q34.3. American Journal of Medical Genetics Part A, 2012. 158A(3): p. 635-640. 64. Huang, T., et al., Cardiac phenotypes in chromosome 4q- syndrome with and without a deletion of the dHAND gene. Genet Med, 2002. 4(6): p. 464-7. 65. Dixit, M., et al., DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proceedings of the National Academy of Sciences, 2007. 104(46): p. 18157-18162. 66. Lemmers, R.J.L.F., et al., A Unifying Genetic Model for Facioscapulohumeral Muscular Dystrophy. Science, 2010. 329(5999): p. 1650-1653. 67. Wallace, L.M., et al., DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Annals of Neurology, 2011. 69(3): p. 540-552. 68. Strehle, E.M. and P.M. Middlemiss, Children with 4q-syndrome: the parents' perspective. Genet Couns, 2007. 18(2): p. 189-99. 69. Ullmann, R., et al., Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Human Mutation, 2007. 28(7): p. 674-682. 70. Hannes, F.D., et al., Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet, 2009. 46(4): p. 223-32. 71. Nagamani, S.C., et al., Phenotypic manifestations of copy number variation in chromosome 16p13.11. Eur J Hum Genet, 2011. 19(3): p. 280-6. 72. Lo Muzio, L., Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis, 2008. 3: p. 32. 73. Yamagishi, H., The 22q11.2 deletion syndrome. Keio J Med, 2002. 51(2): p. 77-88. 74. Merscher, S., et al., TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell, 2001. 104(4): p. 619-29. 75. Lindsay, E.A., et al., Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature, 2001. 410(6824): p. 97-101. 76. Yamagishi, H. and D. Srivastava, Unraveling the genetic and developmental mysteries of 22q11 deletion syndrome. Trends in Molecular Medicine, 2003. 9(9): p. 383-389. 77. Gong, W., et al., Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet, 2001. 38(12): p. E45. 78. Griffin, H.R., et al., Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart, 2010. 96(20): p. 1651-5. 79. Maron, B.J., et al., Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation, 2006. 113(14): p. 1807-16. 80. Gelb, B.D., Genetic basis of congenital heart disease. Current Opinion in Cardiology, 2004. 19(2): p. 110-115. 81. Marino, B. and M.C. Digilio, Congenital heart disease and genetic syndromes: specific correlation between cardiac phenotype and genotype. Cardiovasc Pathol, 2000. 9(6): p. 303-15. 82. Resta, R., et al., A New Definition of Genetic Counseling: National Society of Genetic Counselors’ Task Force Report. Journal of Genetic Counseling, 2006. 15(2): p. 77-83. 83. Welch, K.K. and S.A. Brown, The role of genetic counseling in the management of prenatally detected congenital heart defects. Seminars in Perinatology, 2000. 24(5): p. 373-379. 84. Hoess, K., E. Goldmuntz, and R.E. Pyeritz, Genetic counseling for congenital heart disease: new approaches for a new decade. Current Cardiology Reports, 2002. 4(1): p. 68-75. 85. Tsuang, D., S. Faraone, and M. Tsuang, The Role of Genetic Counseling, in Early Clinical Intervention and Prevention in Schizophrenia, W. Stone, S. Faraone, and M. Tsuang, Editors. 2004, Humana Press. p. 325-336. 86. Roberts, C.D., L.M. Stough, and L.H. Parrish, The role of genetic counseling in the elective termination of pregnancies involving fetuses with disabilities. The Journal of Special Education, 2002. 36(1): p. 48-55. 87. Hoffman, J.I., Congenital heart disease: incidence and inheritance. Pediatric clinics of North America, 1990. 37(1): p. 25-43. 88. Warburton, D., et al., Trisomy recurrence: a reconsideration based on North American data. The American Journal of Human Genetics, 2004. 75(3): p. 376-385. 89. Morris, J., D. Mutton, and E. Alberman, Recurrences of free trisomy 21: analysis of data from the National Down Syndrome Cytogenetic Register. Prenatal diagnosis, 2005. 25(12): p. 1120-1128. 90. Munne, S., et al., Increased rate of aneuploid embryos in young women with previous aneuploid conceptions. Prenatal Diagnosis, 2004. 24(8): p. 638-643. 91. Levy, D., et al., Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 2011. 70(5): p. 886-897. 92. Hoo, J., et al., Recurrent de novo interstitial deletion of 16q in two mentally retarded sisters. Clinical genetics, 1985. 27(4): p. 420-425. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61877 | - |
| dc.description.abstract | 先天性心臟病為一種常見的先天性異常,產前主要仰賴超音波來做診斷,以目前的產前超音波診斷技術,約九成先天性心臟病的胎兒能透過完整的超音波檢查被篩檢出來,但對於先天性心臟病的個案得父母而言,被診斷出來是不足以協助他們做接下來的決定跟準備,關切的問題主要可分為三個方面(1)現況:包含先天性心臟病的類型及是否有合併其他異常(2)病因:染色體異常、基因異常或環境、致畸胎物質(3)未來:預後、手術及下一胎的再發生率。
為了解在現行產前超音波檢查及傳統染色體核型分析的運行下,全基因體定量分析技術的加入,是否能協助先天性心臟病的胎兒的父母親,獲得更多他們想知道的訊息,本論文收集了166個於台大醫院母胎醫學中心透過超音波被診斷為先天性心臟病的胎兒,以資料回朔方式統計他們在被診斷後所接受各項分子醫學檢測的比例,並以個案討論的方式去分析各項檢測結果對於個案及臨床醫學研究的意義。收案個案群中有37.3%(62/166)在台大醫院做接受胎兒染色體核型分析,發現了6個染色體異常個案(9.7%,6/62);染色體核型分析結果正常個案中有90.3%(46/56)進行全基因體定量分析技術,發現三個基因微小缺失的個案,其中一個的微小缺失基因是來自於母系遺傳,另外兩個為新的突變。 本論文收案之先天性心臟病個案,在晶片式全基因體定量分析的加入後多發現了6.25%(3/48)傳統染色體核型分析無法發現的基因微小缺失,對於這些個案而言,有機會探查疾病發生的原因或預測更多超音波無發偵測到的潛在表型,提供給個案父母更完整的診斷資訊;對於檢測結果皆為正常的先天性心臟病個案而言,則 能將遺傳諮詢的重點聚焦在超音波表型上。 產前先天性心臟病個案透過超音波診斷,並結合傳統染色體核型分析及晶片式全基因體定量分析技術,較能針對個案不同的狀況給予適當的遺傳諮詢。 | zh_TW |
| dc.description.abstract | Congenital heart disease (CHD) is one of the most common congenital abnormalities. About 90% congenital heart disease can be diagnosed prenatally through a sufficient ultrasound examination. Parents whose fetus prenatally diagnosed CHD care three aspects, (1) Present: CHD types, extra-cardiac abnormality (2) Etiology: chromosomal abnormality, genetic abnormality, teratogen (3) Future: outcome, surgery, recurrence risk.
In order to know whether adding array comparative genomic hybridization (array CGH) into current prenatal examination can be helpful for parents to get more information, this thesis retrospectively collected and analyses 166 prenatal diagnosed CHD cases in the Maternal-fetal medicine center of National Taiwan University Hospital. 37.3% (61/166) cases accepted conventional karyotyping in NTUH and found 6 (9.7%, 6/62) cases with chromosomal abnormality. 46 of 56 cases (90.3%) with normal karyotype accepted array CGH examination and found 3 cases with gene microdeletion (one maternal inheritance and two de novo). Besides conventional karyotyping, this thesis found another 6.25% genetic imbalance case through array CGH examination. The combination of ultrasound, conventional karyotyping and array CGH can make more chances to find the CHD causative gene and potential phenotype. Even for those CHD cases with normal result of karyotyping and array CGH, this combination can help clinical counselor to focus on ultrasound phenotype and provides a more appropriate genetic counseling. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:16:51Z (GMT). No. of bitstreams: 1 ntu-102-P00448004-1.pdf: 5234753 bytes, checksum: 1ec298c6e66c0ad8c82e7dc87ae2b039 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 內文目錄
口試委員審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 內文目錄 v 圖目錄 ix 表目錄 xi 第一章、緒論 1 1.1先天性心臟病 1 1.1.1心臟發育 1 1.1.2先天性心臟病之定義及分類 1 1.1.3胎兒之先天性心臟病 2 1.2產前診斷胎兒先天性心臟病 2 1.2.1醫用超音波檢查之發展及影像特性 2 1.2.2產前心臟超音波之檢查方式 4 1.2.3產前超音波診斷胎兒先天性心臟病之限制 5 1.3先天性心臟病與染色體異常 6 1.3.1三染色體21對症 7 1.3.2三染色體18對症 7 1.3.3三染色體13對症 8 1.3.4染色體22q11缺失症候群 8 1.4現行產前檢查及篩檢 9 1.4.1一般性產前檢查 10 1.4.2超音波產前檢查 10 1.4.3胎兒染色體及基因檢查 10 1.4.4產前照護概念之演進 12 1.5產前分子細胞基因學診斷之發展及演進 12 1.5.1傳統染色體核型分析 12 1.5.2螢光原位雜交技術 13 1.5.3晶片式全基因體定量分析技術 13 1.5.3.1 技術發展與原理 13 1.5.3.2 晶片類型及特性 14 1.6研究背景及動機 15 1.7研究目的 17 第二章、研究方法 19 2.1個案來源 19 2.2產前先天性心臟病分類方式 19 2.3產前晶片式全+基因體定量分析技術 20 2.3.1使用之晶片類型及分析軟體 20 2.3.2晶片式全基因體定量分析技術流程 21 2.3.3晶片式全基因體定量數據分析方式 22 2.3.4晶片式全基因體定量分析技術之限制 23 第三章、研究結果 24 3.1個案基本資料分析 24 3.1.1孕婦年齡分析 24 3.1.2先天性心臟病超音波診斷週數分析 25 3.2先天性心臟病類型分析 25 3.2.1.心室中膈缺損 25 3.2.2.複雜性先天性心臟病 26 3.2.3.錐幹心臟缺損 27 3.3先天性心臟病個案表型及染色體核型分析結果 27 3.3.1.結果數據 27 3.3.2異常個案討論 28 3.3.2.1 三染色體13對症(個案1及個案4) 28 3.3.2.2 三染色體18對症(個案2、個案3及個案5) 29 3.3.2.3 染色體4q35.2缺失鑲嵌型(個案6) 31 3.4先天性心臟病個案表型及晶片式全基因體定量分析結果 34 3.4.1.結果數據 34 3.4.2異常個案討論 34 3.4.2.1 染色體16p13.11缺失(個案7) 34 3.4.2.2 染色體9q22.31 缺失(個案8) 36 3.4.2.3 染色體22q11.2 缺失(個案9) 38 第四章、研究討論 40 4.1產前診斷先天性心臟病個案之表型與基因型 40 4.1.1. 產前、產後表型與基因型分析之差異 40 4.1.2. 三染色體症候群之產前超音波表型 41 4.1.3. 基因微小片段缺失之產前超音波表型 41 4.1.4. 染色體核型分析及全基因體定量分析結果無異之個案群產前超波表型 42 4.2 各類產前診斷工具的結合及運用 43 4.3 產前檢測之時機點 44 4.4 產前診斷心天性心臟病之遺傳諮詢 45 4.4.1 適當染色體及基因檢測之提供 45 4.4.2. 協助了解胎兒異常之情形 46 4.4.3. 協助個案做決定 47 4.4.4. 再發生率之風險值評估及計算 47 4.5 晶片式全基因體定量分析技術之限制 48 第五章、結論 49 第六章、參考文獻 50 圖目錄 圖一 目前已知與心臟發育各階段相關之基因 60 圖二 胎兒初期唐氏症篩檢的超音波指標 61 圖三 胎兒心臟超音波圖 62 圖四 英國胎兒醫學基金會提出之「倒三角產前照顧模式」示意圖 63 圖五 晶片式全基因體定量分析技術 64 圖六 個案群男女比例分布圖 65 圖七 收案個案群及接受染色體核型分析及接受全基因體定量分析之個案量 66 圖八 染色體不分離所造成染色體症異常 67 圖九 個案基本資料分析 68 圖十 先天性心臟病合併心臟以外異常個案族群之心臟病類型分布 69 圖十一 單純先天性心臟個案族群之心臟病類型分布 70 圖十二 研究個案群之錐幹心臟異常各類型所佔比例圖 71 圖十三 個案接受染色體核型分析及基因晶片檢查之結果分類流程圖 72 圖十四 羅勃遜轉位(Robertsonia translocation)帶原者,理論上產生的配子種類 73 圖十五 第四號染色體長臂上已知的異常表型及基因位置 74 圖十六 個案 ○7及其母親全基因體定量分析發現第十六號染色體16p13.11上有相同的基因微小缺失 75 圖十七 與第十六號染色體16p13位置上相關之症候群 76 圖十八 第十六號染色體 16p13.11 位置上之基因 77 圖十九 個案8第九號染色體9q22.31q22.33位置上3.22Mb基因微小缺失之全基因體定量分析圖 78 圖二十 個案9第22號染色體22q11.2位置上2.49Mb基因微小缺失之全基因體定量分析圖 79 圖二十一 第二十二號染色體22q11.2位置上之基因 80 圖二十二 染色體核型分析及全基因體定量分析結果無異之心臟病個案表型分析 81 圖二十三 產前被診斷胎兒先天性心臟病之孕婦所關注之事情 82 圖二十四 染色體及基因異常個案之先天性心臟病平均超音波診斷週數 83 圖二十五 染色體核型分析及晶片式全基因體定量分析個案中染色體或基因異常之比例 84 圖二十六 遺傳諮詢協助先天性心臟病個案父母做決定時之角色 85 圖二十七 透過各項產前診斷能發現的異常族群類型 86 表目錄 表一 與先天性心臟病相關之染色體異常 87 表二 與先天性心臟病相關之單基因異常 88 表三 染色體22q11缺發症各類型先天性心臟病發生機率 89 表四 染高層次超音波報告範本及產前應確認之胎兒結構 90 表五 各項細胞基因學診斷工具的優缺點 91 表六 先天性心臟病分類類型 92 表七 總個案群基本資料分析表 93 表八 異常個案基本資料分析表 94 表九 先天性心臟合併心外結構異常個案族群之心臟病類型個案數 95 表十 單純先天性心臟個案族群之心臟病類型個案數 96 表十一 複雜性先天性心臟病合併胎兒體位錯置個案之基本資料及表型 97 表十二 染色體核型異常個案表型及基因型對照表 98 表十三 三染色體18症對之個案表型 99 表十四 三染色體13症對之個案表型 100 表十五 染色體4q缺損症候群(4q deletion syndrome) 101 表十六 晶片式全基因體定量分析異常個案表型及基因型對照表 102 表十七 三染色體症候群再發生率之產前評估 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因不平衡 | zh_TW |
| dc.subject | 產前先天性心臟病 | zh_TW |
| dc.subject | 遺傳諮詢 | zh_TW |
| dc.subject | 傳統染色體核型分析 | zh_TW |
| dc.subject | 全基因體定量分析技術 | zh_TW |
| dc.subject | Array comparative genomic hybridization (array CGH) | en |
| dc.subject | Genetic counseling | en |
| dc.subject | Conventional karyotyping | en |
| dc.subject | Genetic imbalance | en |
| dc.subject | Congenital heart disease (CHD) | en |
| dc.title | 產前超音波檢查及晶片式全基因體定量分析技術於先天性心臟病個案之臨床應用 | zh_TW |
| dc.title | Clinical application of prenatal ultrasound and array comparative genomic hybridization(array CGH) on the cases with congenital heart disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施景中(Jin-Chung Shih),李建南(Chien-Nan Lee) | |
| dc.subject.keyword | 產前先天性心臟病,全基因體定量分析技術,遺傳諮詢,傳統染色體核型分析,基因不平衡, | zh_TW |
| dc.subject.keyword | Congenital heart disease (CHD),Array comparative genomic hybridization (array CGH),Genetic counseling,Conventional karyotyping,Genetic imbalance, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
