請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬(Yu-Pin Lin) | |
| dc.contributor.author | Jung-Wen Hsiao | en |
| dc.contributor.author | 蕭戎雯 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:16:32Z | - |
| dc.date.available | 2014-07-31 | |
| dc.date.copyright | 2013-07-31 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | 1. Alonso, D. & Sole, R.V. (2000) The DivGame Simulator: a stochastic cellular automata model of rainforest dynamics. Ecological Modelling, 133, 131-141.
2. Anselin, L. (1995) Local indicators of spatial association - lisa. Geographical Analysis, 27:115. 3. Balling, R.J., Taber, J.T., Brown, M.R., & Day, K. (1999) Multiobjective urban planning ssing genetic algorithm. Journal of Urban Planning and Development, 125, 86-99. 4. Bohensky, E.L., Reyers, B., Van J., Albert S. (2006). Future ecosystem services in a Southern African river basin: a scenario planning approach to uncertainty. Conservation Biology, 20(4), 1051-1061. 5. Briassoulis, H. (2000). Analysis of land use change: theoretical and modeling approaches. 6. Buyantuyev, A., Wu, J., & Gries, C. (2010). Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: time, space and thematic resolution. Landscape and Urban Planning, 94(3), 206-217. 7. Castella, J.C., & Verburg, P.H. (2007). Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modelling, 202(3), 410-420. 8. Chen, J.M. (1999). Spatial scaling of a remotely sensed surface parameter by contexture. Remote Sensing of Environment, 69(1), 30-42. 9. Chu, H.J., Lin, Y.P., Huang, C.W., Hsu, C.Y., & Chen, H.Y. (2010). Modelling the hydrologic effects of dynamic land‐use change using a distributed hydrologic model and a spatial land‐use allocation model. Hydrological Processes, 24(18), 2538-2554. 10. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature 387: 253-260. 11. Corry, R.C., & Nassauer, J. I. (2005). Limitations of using landscape pattern indices to evaluate the ecological consequences of alternative plans and designs. Landscape and Urban Planning, 72(4), 265-280. 12. Dark, S.J., & Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography, 31(5), 471-479. 13. de Jong, R., & de Bruin, S. (2012). Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences, 9(1), 71-77. 14. De Koning, G.H.J., Veldkampb, A., Fresco, L.O. (1998). Land use in Ecuador: a statistical analysis at different aggregation levels, Agriculture, Ecosystems and Environment, Vol.70, pp. 231-247. 15. Dendoncker, N., Rounsevell, M., & Bogaert, P. (2007). Spatial analysis and modelling of land use distributions in Belgium. Computers, Environment and Urban Systems, 31(2), 188-205. 16. Ekins, P., Simon, S., Deutsch, L., Folke, C., & De Groot, R. (2003). A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecological economics, 44(2), 165-185. 17. Ennaanay, D.. (2006). Impacts of land use changes on the hydrologic regime in the Minnesota River basin. University of Minnesota. Major: Water resources science. 18. Forman, R.T.T, & Godron. M. (1986). Landscape Ecology. New York, John Wiley & Sons. 19. Forman, R.T.T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology, 10(3), 133-142. 20. Geneletti D. (2013). Assessing the impact of alternative land-use zoning policies on future ecosystem services, Environmental Impact Assessment Review, Volume 40, April, Pages 25-35, ISSN 0195-9255 21. Haines-Young, R., & Chopping, M. (1996). Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Progress in physical geography, 20(4), 418-445 22. Hay, G.J., Goodenough, D.G., Niemann, K.O. (1997). Spatial thresholds, image-objects, and upscaling: a multi-scale evaluation, Remote Sensing of Environment, 62, pp. 1-19. 23. Heywood. (1998). Introduction to Geographical Information Systems. New York: Addison Wesley Longman. 24. Jacquez, G., Kaufmann, A., Meliker, J., Goovaerts, P., AvRuskin, G., Nriagu, J. (2005). Global, local and focused geographic clustering for case-control data with residential histories. Environmental Health, 4(1), 4. 25. Jantz, P., Goetz, S., & Jantz, C. (2005). Urbanization and the loss of resource lands in the Chesapeake Bay watershed. Environmental Management, 36(6), 808-825. 26. Kok, K., Farrow, A. Veldkamp, A, Verburg, P.H. (2001). A method and application of multi-scale validation in spatial land use models. Agriculture, Ecosystems & Environment, 85(1), 223-238. 27. Kok, K. & Veldkamp, A. (2001) Evaluating impact of spatial scales on land use pattern analysis in Central America. Agriculture, Ecosystems & Environment, 85, 205-221. 28. Lambin, E. F., Baulies, X., Bockstael, N., Fischer, G., Krug T., Leemans, R., Moran, E. F., Rindfuss, R. R, Sato, Y., Skole, D., Turner II B. L., Vogel, C. (1999). Land-Useand Land-Cover Change (LUCC)–Implementation Strategy. A core project of theInternational Geosphere-Biosphere Programme and the International Human Dimensions Programme Global Environmental Change (=IGBP Report; 48/IHDP Report; 10). 29. Lausch, A., Pause, M., Doktor, D., Preidl, S., Schulz, K. (2013). Monitoring and assessing of landscape heterogeneity at different scales. Environmental monitoring and assessment, 1-16. 30. Lautenbach, S., Kugel, C., Lausch, A., Seppelt, R. (2011). Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecological Indicators, 11(2), 676-687. 31. Li, X., et al. (2012).Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China., Landscape ecology 27(6), 887-898. 32. Lin, Y.P., Chu, H.J., Wu, C.F., & Verburg, P.H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. International Journal of Geographical Information Science, 25(1), 65-87. 33. Lin, Y.P., Hong, N.M., Wu, P.J., Wu, C.-F., Verburg, P.H. (2007). Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape and urban planning, 80(1), 111-126. 34. Lin, Y.P., Verburg, P.H., Chang, C.R., Chen, H.Y., & Chen, M. H.. (2009). Developing and comparing optimal and empirical land-use models for the development of an urbanized watershed forest in Taiwan. Landscape and Urban Planning, 92(3), 242-254. 35. Lindenmayer, D.B., Fischer, J., Felton, A., Crane, M., Michael, D., Macgregor, C., Montague-Drake, R., Manning A., Hobbs, R.J. (2008). Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. Conservation Letters, 1(3), 129-135. 36. Liu, H., & Weng, Q.. (2009). Scaling effect on the relationship between landscape pattern and land surface temperature: a case study of Indianapolis, United States. Photogrammetric Engineering and Remote Sensing, 3, 291-304. 37. Lu, Y., Feng, X., Chen, L., & Fu, B. (2013). Scaling effects of landscape metrics: a comparison of two methods. Physical Geography, 34(1), 40-49. 38. Luo, G., Yin, C., Chen, X., Xu, W., & Lu, L. (2010). Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecological Complexity, 7(2), 198-207. 39. McGarigal, K., & Marks, B.J. (1995). Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 40. Meyers, P.A., & Teranes, J. L. (2001). 9. SEDIMENT ORGANIC MATTER. Ann Arbor, 1001, 48109-41063. 41. Millenium Ecosystem Assessment. (2003). Millennium ecosystem assessment. Ecosystems. 42. Millenium Ecosystem Assessment. (2005). Ecosystems and human well-being: current state and trends. 43. Moran, E., Ojima, D., Buchmann, N., Canadell, J., Graumlich, L., Jackson, R., Jaramillo, V., Lavorel, S., Leadly, P., & Matson, P. (2005). GLP Science Plan and Implementation Strategy. IGPB Report No. 53/IHDP Report No. 19, EGBP Secretariat Stockholm. 44. World Commission on Dams. (2000). Dams and Development: A New Framework for Decision-making: the Report of the World Commission on Dams, November 2000: Routledge. 45. Moody, A., & Woodcock, C. E. (1995). The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landscape Ecology, 10(6), 363-379. doi: 10.1007/bf00130213 46. Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R. E., Lehner, B., Ricketts, T.H. (2008). Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences, 105(28), 9495-9500. 47. Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D.R., Kareiva, P.M. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1), 4-11. 48. Nelson G.C., Bennett E., Berhe A.A., Cassman K., DeFries R., Dietz T., et al.(2006)Anthropogenic drivers of ecosystem change: an overview. Ecol Soc;11(2). 49. Noss, R.F., O'Connell, M., & Murphy, D. D. (1997). The science of conservation planning: habitat conservation under the Endangered Species Act: Island Press. 50. O'Neill, R.V., Johnson, A.R., & King, A.W. (1989). A hierarchical framework for the analysis of scale. Landscape Ecology, 3(3-4), 193-205. 51. O’neill, R.V., & King, A.W. (1998). Homage to St. Michael; or, why are there so many books on scale. Ecological Scale: Theory and Applications. Columbia University Press, New York, 316. 52. Obata, K., Wada, T., Miura, T., Yoshioka, H. (2012). Scaling effect of area-averaged NDVI: Monotonicity along the spatial resolution. Remote Sensing, 4(1), 160-179. 53. Openshaw, S. & Taylor, P.J. (1981). The modifiable areal unit problem. Chapter 5 in Quantitative Geography: A British View: London: Routledge. 54. Openshaw, S. (1984). Concepts and techniques in modern geography number 38: the modifiable areal unit problem. Norwick: Geo Books. 55. Openshaw, S. & Taylor, P.J. (1979). A million or so correlation coefficients: three experiments on the modifiable areal unit problem. Statistical applications in the spatial sciences, 21, 127-144. 56. Overmars, K.P., & Verburg, P.H. (2006). Multilevel modelling of land use from field to village level in the Philippines. Agricultural Systems, 89(2), 435-456. 57. Overmars, K.P., Verburg, P.H., Veldkamp, T. (2007). Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land use policy, 24(3), 584-599. 58. Pocas, I., Cunha, M., & Pereira, L. S. (2011). Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal. Applied Geography, 31(3), 871-880. 59. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J.,Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers, 93(2), 314-337. 60. Polasky, S., Nelson, E., Pennington, D., Johnson, K. A. (2011). The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the State of Minnesota. Environmental and Resource Economics, 48(2), 219-242. 61. Pontius Jr., R. G., & Chen, Hao. (2008). Land change modeling with GEOMOD. Clark university. 62. Power, A.G. (2010) Ecosystem services and agriculture: tradeoffs and synergies, PhilosophicalTransactions of the Royal Society B: Biological Sciences, 365 (1554): 2959-2971. 63. Raudsepp-Hearne, C., Peterson, G.D., & Bennett, EM. (2010). Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences, 107(11), 5242-5247. 64. Reyers, B., O'Farrell, Patrick J., Cowling, R.M., Egoh, B.N., Le Maitre, David C., Vlok, J.H.J., (2009). Ecosystem services, land-cover change, and stakeholders: finding a sustainable foothold for a semiarid biodiversity hotspot. 65. Sanchez, J., Stryhn, H., Flensburg, M., Ersboll, A.K., & Dohoo, I. (2005). Temporal and spatial analysis of the 1999 outbreak of acute clinical infectious bursal disease in broiler flocks in Denmark. Preventive veterinary medicine, 71(3), 209-223. 66. Shen, W., Darrel J., G., Wu, J.,& H G., Robert. (2004). Evaluating empirical scaling relations of pattern metrics with simulated landscapes. Ecography, 27(4), 459-469. 67. Tallis, H.T., Ricketts, T., Nelson, E., Ennaanay, D.,Wolny, S., Olwero, N., . . . Aukema, J. (2010). InVEST 1.004 beta User’s Guide. Integrated Valuation of Ecosystem Services and Tradeoffs: Stanford, CA: The Natural Capital Project. 68. Taylor, R. B. (2012). Defining Neighborhoods in Space and Time. Cityscape, 14(2), 225-230. 69. Turner, M. G., O'Neill, R. V., Gardner, R. H., Milne, B. T. (1989). Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 3(3-4), 153-162. doi: 10.1007/bf00131534 70. Turner II, B. L., Skole, D., Sanderson, D., Fishcher, G., Fresco, G., Leemans, R.,(1995). Land Use and Global Land-Cover change: A Proposal for an IGBP-HDPCore Project. IGBP report No.35 and the HDP report No.7. Stochkolm:Royal Swedish Academy of Sciences. 71. Van de G., Nick, S., Tjeerd-Jan, Ajayi, Ayodele E., & Bagayoko, F. (2011). Scale effects in Hortonian surface runoff on agricultural slopes in West Africa: Field data and models. Agriculture, Ecosystems & Environment, 142(1), 95-101. 72. Veldkamp, A, & Fresco, LO. (1996). CLUE: a conceptual model to study the conversion of land use and its effects. Ecological modelling, 85(2), 253-270. 73. Veldkamp, A., Verburg, P. H., 2004. Modelling Land Use Change and Environmental Impact. Joural of Environmental Management, 72, pp. 1-3 74. Verburg, P.H. and Chen, Y.Q.(2000). Multiscale characterization of land-use patterns in China, Ecosystem ,Vol 3, pp.369-385. 75. Verburg, P.H, Eickhout, B., & van Meijl, H. (2008). A multi-scale, multi-model approach for analyzing the future dynamics of European land use. The Annals of Regional Science, 42(1), 57-77. 76. Verburg, P.H., & Keulen, H. van., (1999). Exploring changes in the spatial distribution of livestock in China. Agricultural Systems, 62(1), 51-67. 77. Verburg, P.H., & Overmars, K.P., (2009). Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape ecology, 24(9), 1167-1181. 78. Verburg, P.H., Schot, P.P., Dijst, M.J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61(4), 309-324. 79. Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.A. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30(3), 391-405. 80. Verburg, P.H., Veldkamp, A.1., & Fresco, LO. (1999). Simulation of changes in the spatial pattern of land use in China. Applied Geography, 19(3), 211-233. 81. Vieira, V., Webster, T., Aschengrau, A., & Ozonoff, D. (2002). A method for spatial analysis of risk in a population-based case-control study. International journal of hygiene and environmental health, 205(1), 115-120. 82. Wischmeier, W. H., & Smith, D.D.(1978). Predicting rainfall erosion losses-a guide to conservation planning. 83. Wu, J. (2004). Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology, 19(2), 125-138. 84. Wu, J.,& Hobbs R. (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape ecology 17(4), 355-365. 85. Wu, J., Jones, K.B., Li, H., & Loucks, O.L., eds. (2006) Scaling and uncertainty analysis in ecology: Methods and applications. Springer, Dordrecht, the Netherlands. 86. Wu, J., Shen, W., Sun, W., & Tueller, P. T. (2002). Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology, 17(8), 761-782. 87. Zhang, Y., Claus H., and Xiaoyong Y., (2013). 'Scale‐dependent Ecosystem Service.' Ecosystem Services in Agricultural and Urban Landscapes : 105-121 88. Zhou, B., & Kockelman, Kara M. (2008). Neighborhood impacts on land use change: a multinomial logit model of spatial relationships. The Annals of Regional Science, 42(2), 321-340. 89. Zhou, F., Xu, Y., Chen, Y., Xu, C-Y., Gao, Y., & Du, J. (2013). Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hydrology, 485, 113-125. 90. Zhou, T., Wu, J., & Peng, S. (2012). Assessing the effects of landscape pattern on river water quality at multiple scales: A case study of the Dongjiang River watershed, China. Ecological Indicators, 23, 166-175. 91. 王彥覃(2008),應用自上而下與自下而上土地利用及降雨-逕流模式模擬土地利用變遷與水文量-以寶橋集水區為例,台灣大學生物環境系統工程學系碩士論文。 92. 方琮雅(2001),桃園台地水域用地空間結構變遷之研究,台灣大學農業工程學系碩士論文 93. 朱建銘(2000),土地利用空間型態之研究,國立台灣大學地理學研究所碩士論文。 94. 李明儒(2008),不同空間尺度下網格式土地使用變遷模型之敏感性分析. 國立臺灣大學建築與城鄉研究所碩士論文。 95. 呂仲耿(2001),利用空間資訊探討水源涵養保安林地景變遷. 台灣大學森林研究所碩士論文。 96. 林裕彬、吳振發、鄧東波(2004),汐止市土地利用時空間變遷模式,都市與計劃第31卷: 239-268。 97. 林峰田、林士弘、李萬凱、孫志鴻、林建元與李培芬(2002),宮格自動機於土地利用變遷模擬之結合機制,國立臺灣大學建築與城鄉研究所。 98. 俞俊賓(2008),曾文水庫集水區年降雨沖蝕指數與年降雨量關係之研究. 成功大學水利及海洋工程學系專班學位論文。 99. 吳承寰(2012),應用適合度曲線與遺傳規劃法於河川魚類棲地模擬-分類流況法,臺灣大學生物環境系統工程學研究所碩士論文。 100. 吳佩蓉(2008),整合土地利用模式與水文模式於集水區景觀生態規劃管理,國立台灣大學生物環境工程研究所論文 101. 吳振發(2006),土地利用變遷及景觀生態評估方法之建立,台北大學都市計劃學系博士論文。 102. 吳振發(2011),臺灣鄉村景觀變遷模擬之CLUE-s 模式最佳參數試驗,國立台灣大學地理環境資源學系地理學報第62期:103-125。 103. 洪崢珮(2010),台灣西海岸平原土地使用變遷與生態系統服務之研究,國立臺北大學都市計劃研究所碩士論文。 104. 陳虹螢(2010),整合土地利用與水文模式於集水區規劃管理之研究-以台北都會區為例. 臺灣大學生物環境系統工程學研究所學位論文。 105. 黃鉅友(2013),快速道路建設對鄉村地區發展累積性影響評估-以南投縣草屯鎮為例. 中興大學園藝學系所學位論文。 106. 楊敏嘉(2008),都市化對農地地表覆蓋景觀及生態系統服務變化之影響研究,國立臺北大學都市計劃研究所碩士論文。 107. 顧嘉安(2010),以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地利用型態之影響─ 以台北市為例,成功大學都市計劃學系碩博士班學位論文。. 108. 整合生態系統服務與生態水文於土地利用規劃模擬與決策支援系統建立之研究(2013),行政院國家科學委員會期中報告書。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61870 | - |
| dc.description.abstract | 土地利用之組成(composition)及配置(configuration)對維持生態系統及其服務功能有著決定性之影響,除了會影響生態系統之功能,甚至改變生態系結構,進而牽動生態系統之多樣性情況。但當我們透過地理資訊系統工具,進行土地利用變化的觀測或生態系統服務之模擬計算時,不同的網格解析度會詮釋出不同的地景格局樣式,導致不同的生態系統服務計算結果,進而影響到相關土地利用管理政策之制定與保護區域之劃定。尺度變換下所產生之普遍性問題,通稱「可調整地區單元問題」(Modifiable areal unit problem,簡稱MAUP),也因此,了解尺度問題所帶來的影響以及選擇適當的解析度來進行研究分析十分重要。
本研究以台北大屯溪流域為例,探討不同尺度對土地利用以及CLUE-s(Conversion of Land Use and its Effects for Small Region)土地利用變遷模式模擬結果之影響,並使用InVEST (Integrated Valuation of Environmental Services and Tradeoffs) 生態系統服務模式探討尺度、土地利用與生態系統服務之間的關係。結果發現,尺度於土地利用的影響隨著網格增大,土地利用分類正確率下降,地景嵌塊體會逐漸聚合、聚集與均質化,而土地利用變遷模式所挑選之驅動力因子個數則隨著網格的增大而減少且有所不同,建議進行土地利用分析之最適解析度為所取得資料之最高解析度,最低解析度閾值為100m*100m。尺度的變化對於生態系統服務中的棲地品質影響最大,其次為氮營養鹽與沉積物留存,而出水量則無明顯影響,各生態系統服務之全域空間自相關性隨著網格的增大而遞減,且在空間分布上具有空間自相關性之顯著範圍大多座落在2000m~2500m內,根據本研究結果,建議進行各項生態系統服務模擬之最適解析度為100m*100m,且最低解析度閾值應為150m*150m。本研究結果可作為分析類似集水區面積大小或配置之參考依據,或應用於大型集水區之最小子集水區單元。 | zh_TW |
| dc.description.abstract | Composition and configuration of land use have a decisive influence on maintaining ecosystem structure, services and functions. Such changes can further affect ecosystem biodiversity. When geographic information system tools are applied to investigate changes of land use or to calculate ecosystem services, land use data of different cell size might present different landscape patterns, leading to different ecosystem service results which would affect relative policy making in land use management or ecoregion planning. These common problems due to scaling effects are named as Modifiable Areal Unit Problem (MAUP). Hence, it is important to understand the influence of scaling effects and to select an appropriate resolution for research conduction.
The study takes Datum watershed in New Taipei County as study area to investigate how various scales affect land use and land use modeling, Conversion of Land Use and its Effects for Small Region (CLUE-s), and to discuss relationship between scale, land use and ecosystem services by using Integrated Valuation of Environmental Services and Tradeoffs (InVEST). Results showed that as the cell size increased, the accuracy of land use classification decreased and patches of landscape become more aggregated and homogenized. Moreover, the numbers of driving factors chosen by land use change model decreased as cell size increased. It is suggested to use the finest resolution (50*50m) as the most adequate resolution for interpreting land use data, while the higher limit of resolution threshold is 100m*100m. Resolution change has the greatest impact on habitat quality compared to other ecosystem services, followed by nitrogen and sediment retention, and no significant influence on water yield. Moreover, the global spatial autocorrelation on each ecosystem service decreased as cell size increased, significant range of local spatial autocorrelation was mostly located between 2000~2500m. According to the results, it is suggested the most appropriate resolution for modeling ecosystem services is 100m*100m, and the lowest resolution threshold should be 150m*150m. The study provides useful information for analyzing other watersheds of similar size or configuration, and can be applied as the smallest subwatershed unit in a large watershed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:16:32Z (GMT). No. of bitstreams: 1 ntu-102-R00622020-1.pdf: 4454281 bytes, checksum: f2d2e4afceb774e33d982278903ac13d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 3 1.3 研究流程圖 4 第二章 文獻回顧 6 2.1 土地利用變遷與模擬 6 2.2 生態系統服務與評估模擬 7 2.3 空間尺度之定義與影響 9 2.3.1 空間、尺度之定義 9 2.3.2 尺度對土地利用變遷之影響 11 2.3.3 尺度對於生態系統服務之影響 12 2.4 景觀生態指數 13 2.5 空間自相關 14 第三章 理論與方法 16 3.1 研究區域-大屯溪流域 16 3.2 土地利用模式(CLUE-s) 18 3.3 土地利用模擬情境設定 23 3.3.1 土地利用轉移矩陣 23 3.3.2 土地利用轉移彈性 23 3.3.3 土地利用需求量 24 3.3.4 土地利用變遷驅動力 27 3.4 生態系統服務評估模式(InVEST) 29 3.4.1 碳儲存量和碳封存 30 3.4.2 生物多樣性:棲地品質 32 3.4.3 出水量 36 3.4.4 水質淨化:營養鹽留存 39 3.4.5 沉積物留存 41 3.5 景觀生態指數 43 3.6 空間自相關分析方法 48 3.6.1全域性空間自相關統計分析(Global spatial autocorrelation) 48 3.6.2空間自相關係數圖(spatial autocorrelation coefficient correlogram) 50 3.6.3區域性空間自相關統計分析(Local spatial autocorrelation) 51 第四章 結果與討論-尺度對於土地利用之影響 53 4.1 歷史土地利用資料 53 4.1.1 不同解析度下之土地利用誤差分析 53 4.1.2 景觀指數分析 58 4.2 未來土地利用資料 60 4.2.1 土地利用變遷模擬結果-CLUE-s 60 4.2.2 景觀指數分析 63 第五章 結果與討論-尺度對於生態系統服務之影響 66 5.1 歷史土地利用資料 66 5.1.1 生態系統服務結果-InVEST 66 5.1.2 全域空間自相關分析-Moran’s I 79 5.1.3 空間自相關係數圖結果分析 83 5.1.4 區域空間自相關分析-LISA 87 5.2 未來土地利用資料 94 5.2.1 生態系統服務結果-InVEST 94 5.2.2 全域空間自相關分析-Moran’s I 96 5.2.3 空間自相關係數圖結果分析 98 5.2.4 區域空間自相關分析-LISA 101 第六章 結論與建議 105 6.1 結論 105 6.2 未來研究建議 107 參考文獻 108 附錄一 117 附錄二 120 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生態系統服務 | zh_TW |
| dc.subject | MAUP | zh_TW |
| dc.subject | 土地利用變遷模式 | zh_TW |
| dc.subject | 空間自相關性 | zh_TW |
| dc.subject | 尺度 | zh_TW |
| dc.subject | CLUE-s | en |
| dc.subject | MAUP | en |
| dc.subject | land use change model | en |
| dc.subject | ecosystem service | en |
| dc.subject | scale | en |
| dc.subject | spatial autocorrelation | en |
| dc.subject | InVEST | en |
| dc.title | 不同單元尺度對土地利用及生態系統服務模擬之影響-以大屯溪流域為例 | zh_TW |
| dc.title | Various unit scale effects on land-use and ecosystem services modeling-A case study of Datum Watershed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童慶斌(Ching-Pin Tung),余化龍(Hwa-Lung Yu),任秀慧(Sau-Wai Yam) | |
| dc.subject.keyword | MAUP,土地利用變遷模式,生態系統服務,尺度,空間自相關性, | zh_TW |
| dc.subject.keyword | MAUP,land use change model,ecosystem service,scale,spatial autocorrelation,CLUE-s,InVEST, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
