請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61866完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正(Yen-Jen Oyang) | |
| dc.contributor.author | Jian-Long Huang | en |
| dc.contributor.author | 黃建龍 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:16:22Z | - |
| dc.date.available | 2015-08-08 | |
| dc.date.copyright | 2013-08-08 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | 1. Daborn PJ, Yen JL, Bogwitz MR, Goff GL, Feil E, et al. (2002) A single p450 allele associated with insecticide resistance in drosophila. Science 297: 2253-2256.
2. Hsu JC, Haymer DS, Wu WJ, Feng HT (2006) Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochemistry and Molecular Biology 36: 396-402. 3. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL (1996) Identification of mutations in the houseflypara-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Molecular and General Genetics MGG 252: 51-60. 4. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402. 5. Melander AL (1914) Can insects become resistant to sprays. Journal of Economic Entomology 7: 167-173. 6. Georghiou GP (1990) Overview of insecticide resistance. Managing resistance to agrochemicals From fundamental research to practical strategies American Chemical Society, Washington DC : 18-41. 7. Medina P, Smagghe G, Budia F, del Estal P, Tirry L, et al. (2002) Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth egulators in predatory lacewing adults. Archives of Insect Biochemistry and Physiology 1: 91–101. 8. Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, et al. (2012) Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS ONE 7: e40296. 9. Daborn P, Boundy S, Yen J, Pittendrigh B, ffrench Constant R (2001) DDT resistance in drosophila correlates with cyp6g1 over-expression and confers crossresistance to the neonicotinoid imidacloprid. Molecular Genetics and Genomics 266: 556-563. 10. ffrench Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a drosophila GABA receptor confers insecticide resistance. Nature 363: 449-451. 11. Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, et al. (2002) Resistanceassociated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Molecular Biology 11: 329–336. 12. Shi MA, Lougarre A, Alies C, Fremaux I, Tang ZH, et al. (2004) Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evolutionary Biology 4: 5. 13. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, et al. (2002) Evolution of supergene families associated with insecticide resistance. Science 298: 179-181. 14. McCart C, ffrench Constant RH (2008) Dissecting the insecticide-resistance- associated cytochrome p450 gene cyp6g1. Pest Management Science 64: 639–645. 15. Sanger F, Coulson AR (1975) A rapid method for determining sequences in dna by primed synthesis with dna polymerase. Journal of molecular biology 94: 441-448. 16. Liu L, Li Y, Li S, Hu N, He Y, et al. (2012) Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology 2012. 17. Pevzner PA, Tang H, Waterman MS (2001) An eulerian path approach to dna fragment assembly. Proceedings of the National Academy of Sciences 98: 9748-9753. 18. Li Z, Chen Y, Mu D, Yuan J, Shi Y, et al. (2012) Comparison of the two major classes of assembly algorithms: overlap--layout--consensus and de-bruijn-graph. Briefings in functional genomics 11: 25-37. 19. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) Abyss: a parallel assembler for short read sequence data. Genome research 19: 1117-1123. 20. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Fulllength transcriptome assembly from rna-seq data without a reference genome. Nature biotechnology 29: 644-652. 21. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome research 18: 821-829. 22. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo rnaseq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086-1092. 23. Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. In: German Conference on Bioinformatics. pp. 45-56. 24. Clarke K, Yang Y, Marsh R, Xie L, Zhang KK (2013) Comparative analysis of de novo transcriptome assembly. Science China Life Sciences 56: 156-162. 25. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25: 1754-1760. 26. Langmead B, Trapnell C, Pop M, Salzberg SL, et al. (2009) Ultrafast and memoryefficient alignment of short dna sequences to the human genome. Genome Biol 10: R25. 27. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics1. Annual Review of Genetics 39: 309-338. 28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology 7. 29. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. 30. Katoh K, Misawa K, Kuma Ki, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Research 30: 3059-3066. 31. Notredame C, Abergel C, Andrade M, et al. (2003) Using multiple alignment methods to assess the quality of genomic data analysis. Bioinformatics and genomes: Current perspectives : 27-49. 32. Lee BK, Richards FM (1971) Mol Biol 55: 379-400. 33. Lins L, Thomas A, Brasseur R (2003) Analysis of accessible surface of residues in proteins. Protein science 12: 1406-1417. 34. Calin GA, Liu Cg, Ferracin M, Hyslop T, Spizzo R, et al. (2007) Ultraconserved regions encoding ncrnas are altered in human leukemias and carcinomas. Cancer cell 12: 215-229. 35. Margulies EH, Birney E (2008) Approaches to comparative sequence analysis: towards a functional view of vertebrate genomes. Nature Reviews Genetics 9: 303-313. 36. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, et al. (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of trichoderma. Genome biology 12: R40. 37. Hsu JC, Chien TY, Hu CC, Chen MJM, Wu WJ, et al. (2012) Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome. PLoS ONE 7: e40950. 38. Fang CC, Okuyama T, Wu WJ, Feng HT, Hsu JC (2011) Fitness costs of an insecticide resistance and their population dynamical consequences in the oriental fruit fly. Journal of Economic Entomology 104: 2039-2045. 39. Joosten RP, te Beek TA, Krieger E, Hekkelman ML, Hooft RW, et al. (2011) A series of PDB related databases for everyday needs. Nucleic Acids Research 39: D411-D419. 40. Ahmad S, Gromiha M, Fawareh H, Sarai A (2004) ASAView: database and tool for solvent accessibility representation in proteins. BMC Bioinformatics 5: 41. Chen H, Zhou HX (2005) Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Research 33: 3193-3199. 42. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5: 621-628. 43. Hsu CM, Chen CY, Liu BJ (2011) WildSpan: mining structured motifs from protein sequences. Algorithms for Molecular Biology : AMB 6: 6. 44. Reenskaug T (1979) Thing-model-view-editor-an example from a planningsystem. Technical note, Xerox PARC . 45. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology 8: 260-271. 46. Zhang Z, Xiao J, Wu J, Zhang H, Liu G, et al. (2012) Paraat: a parallel tool for constructing multiple protein-coding dna alignments. Biochemical and Biophysical Research Communications 419: 779-781. 47. Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, et al. (2006) Kaks_calculator: calculating ka and ks through model selection and model averaging. Genomics, Proteomics & Bioinformatics 4: 259-263. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61866 | - |
| dc.description.abstract | 東方果實蠅(Bactrocra dorsalis)是危害世界各地經濟作物的主要害蟲之一,其抗藥性是一項亟待解決的問題。目前被發表出來、和抗藥性相關的基因如AChE、GSTs、COEs 和P450s 都和基因突變有關。為了調查基因突變和抗藥性的相關性,本研究設計了一項方法,企圖找出與抗藥性相關的點突變,並對這些點突變做定性分析。
本研究所用到的樣本包含一個感性品系、三個抗性品系(分別抗福木松、芬殺 松和納乃得)和三個復性品系(福木松、芬殺松和納乃得)。樣本經過定序以後,再透過VelVet 和Oases 軟體做序列組裝。利用blastx 將組裝好的isotigs 和黃果蠅(Drosophila melanogaster)蛋白質序列做序列比對,找出每個isotig 所比對到的黃果蠅蛋白質序列,作為其同源基因(homologous gene)。接著對於每個殺蟲劑實驗組,透過多重序列比對(multiple sequence alignment)比較同源基因中的感性、抗性和復性isotigs。結果顯示,總共有26 個感性isotigs,在三種殺蟲劑實驗組中都可以找到發生在同一位置的點突變,這些點突變很有可能和抗藥性有關。針對這26 個感性isotigs 做四種特性分析:突變頻率、突變位置是否在蛋白質表面、基因表現量和跨物種保留性,以探討突變和抗藥性的相關性。突變頻率分析顯示了這些突變確實存在,例如抗性isotig 具有較高的抗性品系read 回貼數、但是感性isotig 和復性isotig 則具有較低的抗性品系read 回貼數。在蛋白質表面發生的突變很可能和殺蟲劑分子結合有關。如果具有點突變的isotigs 在基因表現上產生調控(正調控或負調控),它們很可能和殺蟲劑代謝有關。此外,本研究也利用了黃果蠅的AChE、GSTs、COEs 和P450s 相關基因來驗證點突變,結果顯示東方果實蠅的基因在這幾個分類,皆有為數不少的基因具有點突變。最後,透過資料庫的建立,提供友善的使用介面方便存取本篇研究的結果,將有助於後續應用。 | zh_TW |
| dc.description.abstract | Bactrocera dorsalis is one of the serious agricultural pests that result in the economic injury worldwide. The insecticide resistance of B. dorsalis is an important issue to be addressed. Several known insecticide related genes, such as AChE, GSTs, COEs, and P450s, were reported to be involved in gene mutations. To investigate the sequence variations related to insecticide resistance, an approach is proposed in this thesis for mutation discovery and characterization.
The samples for this study include a susceptible line, three resistant lines of formothion, fenthion and methomyl, and three recovered lines of formothion, fenthion and methomyl, respectively. The samples were sequenced and assembled into isotigs by using Velvet followed by Oases. Blastx was performed against proteins of Drosophila melanogaster to search for homologou genes for each isotig. For each insecticide group, isotigs of the susceptible line, the resistant line and the recovered line with the same homologou gene were compared by invoking multiple sequence alignment. In the results, there were 26 susceptible isotigs of which the mutations were commonly observed in three insecticide groups and were highly considered related to insecticide resistance. Four characterizations were applied to these isotigs: mutation frequency, protein surface, gene expression and evolutionary conservation, to investigate how these mutations might be related to insecticide resistance. Mutation frequency analysis supports the validity of most of the mutations, i.e. high read counts in the resistant line but low in both of the susceptible and the recovered line. Some mutations were predicted to be on the protein surface and might be involved in insecticide binding. In addition, AChE, GSTs, COEs and P450s related genes of D. melanogaster were examined to see if they contain point mutations discovered in this study, and the results showed that there are several B. dorsalis genes in each category found to have point mutations. In the end, a database was established with a friendly user interface for conveniently accessing data generated in this study for future applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:16:22Z (GMT). No. of bitstreams: 1 ntu-102-R00945039-1.pdf: 1696955 bytes, checksum: c071e6b0dd40555f316c3fb0af9c4d1f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2. Literature Reivew . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Insecticide Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Cross Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Insecticide Resistance Related Genes . . . . . . . . . . . . . . . . 5 2.4 Next-Generation Sequencing . . . . . . . . . . . . . . . . . . . . . 6 2.5 De novo Transcriptome Assembly . . . . . . . . . . . . . . . . . . 7 2.6 Short Read Mapping of Transcriptome . . . . . . . . . . . . . . . . 7 2.7 Sequence Homology and Alignment . . . . . . . . . . . . . . . . . 8 2.8 Solvent Accessible Surface Area . . . . . . . . . . . . . . . . . . . 9 2.9 Evolutionary Conservation . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 3. Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Transcriptome Sequences . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Analysis Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Homologous Gene Search . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Multiple Sequence Alignment . . . . . . . . . . . . . . . . . . . . 14 3.5 Establishment of Mutation Profile . . . . . . . . . . . . . . . . . . 16 3.6 Characterization on Point Mutation . . . . . . . . . . . . . . . . . 17 3.6.1 Mutation Frequency . . . . . . . . . . . . . . . . . . . . . . 18 3.6.2 Protein Surface Analysis . . . . . . . . . . . . . . . . . . . . 19 3.6.3 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6.4 Evolutionary Conservation . . . . . . . . . . . . . . . . . . 20 Chapter 4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Homologous Gene Search . . . . . . . . . . . . . . . . . . . . . . 21 4.2 The Parsing of Multiple Sequence Alignment . . . . . . . . . . . . 21 4.3 Mutation Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Protein Surface Analysis . . . . . . . . . . . . . . . . . . . . . . . 23 4.5 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.6 Evolutionary Conservation . . . . . . . . . . . . . . . . . . . . . . 28 4.7 Comparison with Known Resistant Genes . . . . . . . . . . . . . . 28 Chapter 5. Database Construction . . . . . . . . . . . . . . . . . . . . . . . 30 5.1 MVC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2 Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3 Website Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 7. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 43 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 | |
| dc.language.iso | en | |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 點突變 | zh_TW |
| dc.subject | 東方果實蠅 | zh_TW |
| dc.subject | 多重序列比對 | zh_TW |
| dc.subject | oriental fruit fly | en |
| dc.subject | point mutation | en |
| dc.subject | insecticide resistance | en |
| dc.subject | multiple sequence alignment | en |
| dc.title | 探討東方果實蠅序列突變與其抗藥性的相關性 | zh_TW |
| dc.title | Investigation on sequence variations related to insecticide resistance in Bactrocera dorsalis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳倩瑜(Chien-Yu Chen) | |
| dc.contributor.oralexamcommittee | 許如君(Ju-Chun Hsu),莊樹諄(Trees-Juen Chuang) | |
| dc.subject.keyword | 東方果實蠅,點突變,抗藥性,多重序列比對, | zh_TW |
| dc.subject.keyword | oriental fruit fly,point mutation,insecticide resistance,multiple sequence alignment, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
