Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61864
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孫霖(Sun-Lin Chung)
dc.contributor.authorJui-Ting Tangen
dc.contributor.author湯瑞婷zh_TW
dc.date.accessioned2021-06-16T13:16:17Z-
dc.date.available2013-07-31
dc.date.copyright2013-07-31
dc.date.issued2013
dc.date.submitted2013-07-29
dc.identifier.citation梁育瑄 (2006) 雅魯藏布江與伊洛瓦底江碎屑鋯石同位素示蹤研究。國立台灣大學地質科學研究所碩士論文,共86頁。
Allegre, C.J., and 34 others, 1984: Structure and evolution of the Himalayan-Tibet orogenic belt, Nature, 307, 17-22.
Amelin Y., Lee D.-C., Halliday A.N. and Pidgeon R.T., 1999: Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons, Nature 399, 252-255.
Andersen, T., 2002: Correction of common lead in U-Pb analyses that do not report 204Pb, Chemical Geology, 192, 59-79.
Andersen, T., 2005: Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation, Chemical Geology, 216, 249-270.
Andersen, T., 2008. Appendix A3: ComPbCorr-software for common lead correction of U-Th-Pb analyses that do not report 204Pb. In: Sylvester, P. (ed.), Laser ablation-ICP-MS in the earth sciences: current practices and outstanding issues, Mineralogical Association of Canada Short Course Series, 40, 312-314.
Barber, A.J. and Crow, M.J., 2009: Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys, Island Arc, 18, 3-20.
Bender, F., 1983: Geology of Burma, Borntraeger, Berlin, 293p.
Blichert-Toft, J. and Albarede, F., 1997: The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system, Earth and Planetary Science Letters, 148, 243-258.
Bodet, F.C. and Scharer, U., 2000: Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers, Geochimica et Cosmochimica Acta, 64, 2067-2091.
Bracciali, L., Najman, Y., Parrish, R.R., Akhter, S.H. and Garzanti, E., 2013: Early Miocene river capture in the Eastern Himalaya: a multi-technique provenance study of the paleo-Brahmaputra deposits (Bengal Basin, Bangladesh), Geophysical Research Abstracts, 15, EGU2013-9299-2.
Brookfield, M.E., 1998: The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southward, Geomorphology, 22, 285-312.
Cawood, P.A., Nemchin, A.A., Freeman, M. and Sircombe, K., 2003: Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies, Earth and Planetary Science Letters, 210, 259-268.
Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I.-J., Iizuka, Y., Xie, L.-W., Wang, Y. and Chu, M.-F., 2009: Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet, Tectonophysics, 477, 3-19.
Chu, M.-F., Chung, S.-L., Song, B., Liu, D., O'Reilly, S.Y., Pearson, N.J., Ji, J. and Wen, D.-R., 2006: Zircon U–Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet, Geology,34, 745-748.
Chu, M.-F., Chung, S.-L., O’Reilly, S.Y., Pearson, N.J., Wu, F.-Y., Li, X.-H., Liu, D., Ji, J., Chu, C.-H. and Lee, H.-Y., 2011: India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks, Earth and Planetary Science Letters, 307, 479-486.
Chung, S.-L., Chu, M.-F., Ji, J., O'Reilly, S.Y., Pearson, N.J., Liu, D., Lee, T.-Y. and Lo, C.-H., 2009: The nature and timing of crustal thickening in Southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites, Tectonophysics, 447, 36-48.
Cina, S., Yin, A., Grove, M., Dubey, C.S., Shukla, D.P., Lovera, O.M., Kelty, T.K., Gehrels, G.E., and Foster, D.A., 2009: Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: Implications for the Neogene evolution of the Yalu-Brahmaputra River system, Earth and Planetary Science Letters, 285, 150-162, doi:10.1016/j.epsl.2009.06.005.
Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E. and Chen, L., 2004: Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns, Tectonics, 23, TC1006, doi:10.1029/2002TC001402.
Cliff, R.A., 1985: Isotopic dating in metamorphic belts, Journal of the Geological Society, 142, 97-110.
Clift, P.D., 2006: Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean, Earth and Planetary Science Letters, 241, 571-580, doi:10.1016/j.epsl.2005.11.028.
Condie, K.C., Beyer, E., Belousova, E., Griffin, W.L. and O’Reilly, S.Y., 2005: U–Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust, Precambrian Research, 139, 42-100.
Curray, J.R., 2005: Tectonics and history of the Andaman Sea region, Journal of Asian Earth Sciences, 25, 187-232.
DeCelles, P.G., Gehrels, G.E., Quade, J., LaReau, B. and Spurlin, M., 2000: Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal, Science, 288, 497-499.
Dong, G.C., Mo, X.X., Zhao, Z.D., Zhu, D.C., Goodman, R.C., Kong, H.L. and Wang, S., 2013: Zircon U–Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean, Journal of Asian Earth Sciences, 62, 282-294.
Dunning, G.R., Macdonald, A.S. and Barr, S.M., 1995: Zircon and monazite U-Pb dating of the Doi Inthanon core complex, northern Thailand: implications for extension within the Indosinian Orogen, Tectonophysics, 251, 197-213.
Earth Sciences Research Division, 1977: Geological Map of the Socialist Republic of the Union of Burma, 1:1000,00 scale, Rangoon.
Fedo, C.M., Sircombe, K.N. and Rainbird, R.H., 2003: Detrtial zircon analysis of the sedimentary record. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon, Reviews in Mineralogy and Geochemistry, 53, 277-303.
Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., and Shee, S.R., 2000: The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon, megacrysts in kimberlites, Geochimica et Cosmochimica Acta, 64, 133-147.
Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X. and Zhou, X., 2002: Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes, Lithos, 61, 237-269.
Hallet, B. and Molnar, P.,2001: Distorted drainage basins as markers of crustal strain east of the Himalaya, Journal of Geophysical Research, 106, 13697-13709.
Harrison, T.M., Copeland, P., Kidd, W.S.F. and Yin, A., 1992: Raising Tibet, Science, 255, 1663-1670.
Hoang, L., Wu, F.-Y. and Clift, P.D., Wysocka, A., Swierczewska, A., 2009: Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons, Geochemistry, Geophysics, Geosystems, 10, doi:10.1029/2009GC002819.
Hoskin, P.W.O. and Black, L.P., 2000: Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon, Journal of Metamorphic Geology, 18, 423-439.
Hoskin, P.W.O. and Schaltegger, U., 2003: The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M., Hoskin, P.W.O(eds.), Zircon, Reviews in Mineralogy & Geochemistry, 53, 27-62.
Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chemical Geology, 211, 47-69.
Jaffey, A.H., Flynn, K.F., Glendenin, L.F., Bentley, W.C. and Essling, A.M., 1971: Precision measurements of half-lives and specific activities of 235U and 238U, Physical Review C, 4, 1889-1906.
Ji, W.-Q., Wu, F.-Y., Chung, S.-L., Li, J.-X. and Liu, C.-Z., 2009: Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet, Chemical Geology, 262, 229-245.
Khan, P.K. and Chakraborty, P.P., 2005: Two-phase opening of Andaman Sea: a new seismotectonic insight, Earth and Planetary Science Letters, 229, 259-271.
Kinny, P.D. and Maas, R., 2003, Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar, J.M., Hoskin, P.W.O(eds.), Zircon, Reviews in Mineralogy & Geochemistry, 53, 327-341.
Koons, P.O., 1995: Modelling the topographic evolution of collisional mountain belts, Annual Reviews of Earth and Planetary Sciences, 23, 375-408.
Knudsen, T. L., Griffin, W. L., Hartz, E. H., Andresen, A. and Jackson, S. E., 2001, In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking. Contributions to Mineralogy and Petrology, 141, 83-94.
Lacassin, R., Maluski, H., Leloup, P.H., Tapponnier, P., Hinthong, C., Sirbhakdi, K., Chuaviroj, S. and Charoenravat, A., 1997: Tertiary diachronic extrusion and deformation of western Indochina: structural and 40Ar/39Ar evidence from NW Thailand, Journal of Geophysical Research, 102 (B5), 10013-10037.
Lee, H.-Y., Chung, S.-L., Wang, J.-R., Wen, D.-J., Lo, C.-H., Yang, T.F. , Zhang, Y.-Q., Xie, Y.-W., Lee, T.-Y., Wu, G.-Y. and Ji, J.-Q., 2003: Miocene Jiali faulting and its implications for Tibetan tectonic evolution, Earth and Planetary Science Letters, 205, 185-194.
Lee, H.-Y., Chung, S.-L., Yang, H.-M., Chu, C.-H., Lo, C.-H. and Mitchell, A.H.G., in preparation: Late Cenozoic post-collisional volcanism in central Myanmar: Geochemical characteristics, petrogenesis and geodynamic significance.
Liang, Y.-H., Chung, S.-L., Liu, D., Xu, Y.-G., Wu, F.-Y., Yang, J.-H., Wang, Y.-B. and Lo, C.-H., 2008: Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system, American Journal of Science, 308, 618-638.
Lin, T.-H., Chung, S.-L., Kumar, A., Wu, F.-W., Chiu, H.-Y. and Lin, I.-J., 2013: Linking a prolonged Neo-Tethyan magmatic arc in South Asia: Zircon U-Pb and Hf isotopic constraints from the Lohit Batholith, NE India, Terra Nova,in press.
Lin, T.-H., Chung, S.-L., Mitchell, A., Thura Oo, Chiu, H.-Y., Hung, C.-H. and Lee, H.-Y., in preparation: Petrogenesis and tectonic implications of Cretaceous to Tertiary granitic rocks from Myanmar: whole rock geochemical and zircon Hf isotopic constraints.
Ludwig, K.R., 2003: Isoplot v. 3.0: a geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center, Special Publication, No. 4, 70 p.
Meert, J.G. and Lieberman, B.S., 2008: The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation, Gondwana Research, 14, 5-21.
Metcalfe, I., 2006: Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context, Gondwana Research, 9, 24-46.
Metcalfe, I., 2011: Tectonic framework and Phanerozoic evolution of Sundaland, Gondwana Research 19, 3-21.
Metcalfe, I., 2013: Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys, Journal of Asian Earth Sciences, 66, 1-33.
Mitchell, A., Myint Thein Htay, Kyaw Min Htun, Myint Naing Win, Thura Oo and Tin Hlaing, 2007: Rock relationships in the Mogok Metamorphic belt, Tatkon to Mandalay, central Myanmar, Journal of Asian Earth Sciences 29, 891-910.
Mitchell, A., Chung, S.-L., Thura Oo, Lin, T.-H. and Hung, C.-H., 2012: Zircon U–Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? Journal of Asian Earth Sciences, 56, 1-23.
Molnar, P., England, P. and Martinod, J., 1993: Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon, Reviews of Geophysics, 31, 357-396.
Morley, C.K., 2012: Late Cretaceous-Early Palaeogene tectonic development of SE Asia, Earth-Science Reviews, 115, 37-75.
Myrow, P.M., Hughes, N.C., Paulsen, T.S., Williams, I.S., Parcha, S.K., Thompson, K.R., Bowring, S.A., Peng, S.C. and Ahluwalia, A.D., 2003: Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction, Earth and Planetary Science Letters, 212, 433-441.
Pan, G., Ding, J., Yao, D., Wang, L., chief compilers, 2004: Guidebook of 1:1,500,000 geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas, Chengdu Cartographic Publ. House, Chengdu, China. 48p.
Patchett, P.J., Kouvo, O., Hedge, C.E. and Tatsumoto, M., 1981: Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes, Contributions to Mineralogy and Petrology, 78, 279-297.
Pell, S.D., Williams, I.S. and Chivas, A.R., 1997: The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands, Sedimentary Geology, 109, 233-260.
Raymo, M.E. and Ruddiman, W.F., 1992: Tectonic forcing of late Cenozoic climate, Nature, 359, 117-122.
Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M. and Zhao, D., 2008: The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume, Gondwana Research, 14, 51-72.
Rogers, J.J.W. and Santosh, M., 2004: Continents and Supercontinents, Oxford University Press, USA, 1-289.
Rollinson, H., 1993: Using Geochemical Data: Evaluation, Presentation, Interpretation, Longman, London, 352 p.
Rubatto, D., 2002: Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism, Chemical Geology, 184, 123-138.
Searle, M.P., Whitehouse, M.J., Robb, L.J., Ghani, A.A., Hutchison, C.S., Sone, M., Ng, S.W.-P., Roselee, M.H., Chung, S.-L. and Oliver, G.J.H., 2012: Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: constraints from new U–Pb zircon chronology of SE Asian tin granitoids, Journal of the Geological Society, 169, 489-500.
Seeber, L. and Gornitz, V., 1983: River profiles along the Himalayan arc as indicators of active tectonics, Tectonophysics, 92, 335-367.
Soderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.K., 2004: The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions, Earth and Planetary Science Letters, 219, 311-324.
Steckler, M.S., Akhter, S.H. and Seeber, L., 2008: Collision of the Ganges–Brahmaputra Delta with the Burma arc: implications for earthquake hazard, Earth Planetary Science Letters, 273, 367-378.
Sun, W.-H., Zhou, M.-F., Gao, J.-F., Yang, Y.-H., Zhao, X.-F. and Zhao, J.-H., 2009a: Detrital zircon U–Pb geochronological and Lu–Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China, Precambrian Research, 172 (1-2), 99-126.
Thura Oo, Hlaing, T. and Htay, N., 2002: The Permian of Myanmar, Journal of Asian Earth Sciences, 20, 683-689.
Usuki, T., Lan, C.-Y., Wang, K.-L. and Chiu, H.-Y., 2013: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons, Tectonophysics, 586, 145-159.
Vermeesch, P., 2004: How many grains are needed for a provenance study? Earth Planetary Science Letters, 224(3-4), 441-451.
Wang, L.-J., Yu, J.-H., Griffin, W.L. and O’Reilly, S.Y., 2012: Early crustal evolution in the western Yangtze Block: Evidence from U–Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks, Precambrian Research, 222-223, 368-385.
Wetherill, G.W., 1956: Discordant uranium–lead ages, Transactions, American Geophysical Union, 37, 320-326.
Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H. and Xu, P., 2006: Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology, Chemical Geology, 234, 105-126.
Xu, Y.-G., Yang, Q.-J., Lan, J.B., Luo, Z.Y., Huang, X.L., Shi, Y.-R. and Xie, L.-W., 2012: Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes, Journal of Asian Earth Sciences, 53, 151-175.
Yao, J.-L., Shu, L.-S. and Santosh, M., 2011: Detrital zircon U–Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China, Gondwana Research, 20, 553-567.
Yin, A. and Harrison, T.M., 2000: Geologic evolution of the Himalayan-Tibetan orogen, Annual Review of Earth and Planetary Sciences, 28, 211-280.
Yu, J.-H., O’Reilly, S.Y., Wang, L.-J., Griffin, W.L., Zhou, M.-F., Zhang, M. and Shu, L.-S., 2010: Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments, Precambrian Research, 181, 97-114.
Zeitler, P.K., Meltzer, A.S., Koons, P.O., Craw, D., Hallet, B., Chamberlain, C.P., Kidd, W.S.F., Park, S.K., Seeber, L., Bishop, M. and Shroder, J., 2001: Erosion, Himalayan geodynamics, and the geomorphology of metamorphism, GSA Today, 11, 4-9.
Zhai, Q.-G., Jahn, B.-M., Su, L., Wang, J., Mo, X.-X., Lee, H.-Y., Wang, K.-L. and Tang,S., 2013: Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications, Journal of Asian Earth Sciences, 63, 162-178.
Zhang, J.-Y., Yin, A., Liu, W.-C., Wu, F.-Y., Lin, D. and Grove, M., 2012: Coupled U-Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: Constraints on the transport processes and evolution of Himalayan rivers, Geological Society of America Bulletin, 124, 1449-1473, doi: 10.1130/B30592.1.
Zhao, G., Cawood, P.A., Wilde, S.A. and Sun, M., 2002: Review of global 2.1-1.8 Ga collisional orogens and accreted cratons: a pre-Rodinia supercontinent? Earth Science Reviews, 59, 125-162.
Zhao, X.F., Zhou, M.F., Li, J.W., Sun, M., Gao, J.-F., Sun, W.-H. and Yang, J.-H., 2010b: Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block, Precambrian Research, 182, 57-69.
Zhu, D.C., Zhao, Z.D., Niu, Y., Mo, X.X., Chung, S.-L., Hou, Z.Q., Wang, L.Q. and Wu, F.-Y., 2011: The Lhasa terrane: record of a micro-continent and its histories of drift and growth, Earth and Planetary Science Letters, 301, 241-255.
Zi, J.-W., Cawood, P.A., Fan, W.-M., Tohver, E., Wang, Y.-J. and McCuaig, T.C., 2012: Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys, Lithos, 140-141, 166-182.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61864-
dc.description.abstract印度-亞洲碰撞事件不但造成青藏高原的抬升與東南亞錯綜複雜的地形,也影響了當地主要河流的流域變化。伊洛瓦底江一般被認為曾經是位於青藏高原上的雅魯藏布江的下游;大約在中新世晚期,由於南迦巴瓦峰的抬升導致布拉馬普特拉河的溯源侵蝕進而襲奪雅魯藏布江,使伊洛瓦底江形成現今所見的流域。為了更了解亞洲地區的構造作用與河流侵蝕堆積和流域演化的相互關係,我們進行了緬甸伊洛瓦底江流域碎屑鋯石研究。本研究利用雷射剝蝕感應耦合電漿質譜術(LA-ICPMS)將沉積年代為白堊紀到中新世的沉積岩以及河沙分別進行鋯石的鈾鉛(U-Pb)定年與鉿(Hf)同位素分析。將分析結果與西藏南部、雲南西部及緬甸的主要花崗岩體(如岡底斯岩體)中岩漿鋯石的鈾鉛定年結果與鉿同位素數據作比對,探討伊洛瓦底江沉積物來源和東南亞大河的流域演化。本研究的數據顯示伊洛瓦底江的沉積物來源主要為西緬甸地塊上的Wuntho-Popa岩體,且有兩個週期的主要變化,發生在~55 Ma和~30 Ma。這兩個時間點的變化都是由物源集中變成物源分散,反映出印度-亞洲碰撞對河流發育的影響。另外一個重要的物源變化發生於中新世最早期,大約在20 Ma,此時在東北方的滇西-撣(Dianxi-Shan)岩體開始提供伊洛瓦底江沉積物源。而河沙的碎屑鋯石數據和中新世沉積岩的數據相似,說明了伊洛瓦底江從中新世以來流域沒有太大的改變,由此推斷伊洛瓦底江現今流域的雛形在中新世已經形成。本研究認為伊洛瓦底江的沉積物來源比較有可能來自於緬甸當地而非藏南地區,因此伊洛瓦底江流域可能從白堊紀晚期至今都是獨立發展的河系。
本研究另外報導一個採集自薩爾溫江口的河沙標本的碎屑鋯石鈾鉛定年與鉿同位素分析。薩爾溫江流域狹長,流經羌塘地塊南部、拉薩地塊東部與滇緬馬(Sibumasu)地塊。此標本的定年結果顯示有34% (n = 35/102)為中生代鋯石,大於250 Ma的鋯石則佔總分析量的62% (n = 63/102)。此外,中生代鋯石中約90% (n = 32/35)的鋯石有著較為富集的鉿同位素組成;其中18顆三疊紀(214 ± 3 Ma)的鋯石鉿同位素初始值很低(εHf(T) = -5.8 to -20),其最有可能的物源是當地的印支期岩體,如湄賓(Mae Ping)及臨滄(Lincang)岩體。薩爾溫江的碎屑鋯石數據明顯與伊洛瓦底江的碎屑鋯石數據不同,新生代鋯石所佔比例小,且有許多印支期鋯石存在。而大於250 Ma的河沙碎屑鋯石數據與滇緬馬地塊上兩個三疊紀砂岩碎屑鋯石數據相似,提供了滇緬馬地塊的岩漿事件與地殼演化的新證據:至少有五期岩漿活動,分別在約2.5 Ga、1.9 Ga、1.0 Ga, 650-500 Ma與213 Ma,其中第一期和第三期有重要的新生地殼形成。
zh_TW
dc.description.abstractThe India-Asia collision has resulted in the uplift of the Tibetan plateau and complicated landscape changes in Southeast Asia since the early Cenozoic. It therefore influenced the river drainage patterns in the region. Being one of the major rivers in Southeast Asia, the Irrawaddy was probably the downstream of the Yarlu Tsangpo on southern Tibet that was captured by upward erosion of the Brahmaputra owing to uplift of the Namche Barwa syntaxis during perhaps Late Miocene time. To understand the interaction between Asian tectonics, drainage system evolution, river erosion and deposition, we conducted a detrital zircon study of the Irrawaddy River in Myanmar. Zircon separates from late Cretaceous to Miocene sedimentary rocks and riverbank sediments were subjected to in-situ U-Pb and Hf isotope measurements using LA-Q-ICPMS and LA-MC-ICPMS, respectively. These results, combined with zircon U-Pb and Hf isotope data available from major batholiths and related igneous rocks that crop out in southern Tibet (e.g., the Gangdese or so-called Transhimalayan batholiths) through western Yunnan and Myanmar, allow us to explore the sedimentary source-to-sink relation in the Irrawaddy and the drainage evolution in Southeast Asia. Our data identify two cycles of major changes in source provenance. The changes, occurring ~55 and ~30 Ma, both characterized with switching from more uniform to heterogeneous detrital sources, may have resulted from the tectonic forcing of the India-Asian collision. An additional marked change took place at ~20 Ma in the earliest Miocene, when abundant Cenozoic zircons with negative εHf(T) values started deriving from the Dianxi-Shan batholiths in northeast, which we attribute to development of the modern Irrawaddy drainage. Detrital zircon data from riverbank sands and Miocene samples are similar, suggesting that there has been insignificant change in the Irrawaddy drainage patterns since Miocene time. Our results suggest that the Irrawaddy sediments are more likely derived from local sources, not from Tibet or Himalaya. Thus, the Irrawaddy may have developed independently from other major rivers in Southeast Asia.
In comparison, we report new U-Pb age and Hf isotope results of detrital zircons from the Salween River mouth. Being one of the major rivers in Southeast Asia sourced from the Tibetan plateau, the Salween is marked with a narrow drainage system that flows over the southern Qiangtang, eastern Lhasa and Sibumasu terranes. We performed in situ U-Pb and Hf isotope analysis using LA-ICPMS of 108 grains of detrital zircon separates from a riverbank sand sample from the Salween river mouth. The results show 37% (n = 38/102) of Mesozoic ages, and 62% (n = 63/102) of Paleozoic ages or older. Moreover, ~90% (n = 32/35) of the Mesozoic zircons have low Hf isotopic ratios or negative εHf(T) values. There are abundant (n = 18) Triassic zircons (214 ± 3Ma) that exhibit exclusively negative and low εHf(T) values (-5.8 to -20), derived most likely from the Indosinian granitoids such as the Mae Bing and Lincang batholiths exposed in the Sibumasu and Indochina terrane, respectively. These data, characterized by the scarcity of Cenozoic zircons and abundance of the Indosinian population, make the Salween river sands differ markedly from the Irrawaddy’s. As for the Paleozoic and older zircons, their U-Pb and Hf isotope patterns are similar to those of detrital zircons from two Triassic formations, i.e., the Shweminbon turbidite, Nanpandet area and Yewa mica schist, the Shan Scarp. They offer new constraints on the magmatic and crustal evolution of the Sibumasu terrane that, together with literature data, allow us to identify at least five stages of magmatic activities at ~2.5 Ga, 1.9 Ga, 1.0 Ga, 650-500 Ma and 213 Ma, with important mantle inputs or juvenile crustal growth at the first and third stages.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:16:17Z (GMT). No. of bitstreams: 1
ntu-102-R00224111-1.pdf: 10801453 bytes, checksum: 93f9f5f606d9c62d0bea3f38efc2bf94 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝……………………………………………………………………………i
中文摘要……………………………………………………………………ii
英文摘要……………………………………………………………………iv
目錄………………………………………………………………………………vii
圖目………………………………………………………………………………ix
表目………………………………………………………………………………xi
一、前言………………………………………………………………………1
二、地質背景………………………………………………………………3
2-1緬甸地質概況………………………………………………………4
2-1-1西緬甸地塊…………………………………………………4
2-1-2滇緬馬地塊…………………………………………………4
2-1-3 緬甸地區地體構造演化…………………………6
2-2 東南亞地區重要岩基…………………………………………7
2-2-1 Transhimalayan與相關岩基……………7
2-2-2 印支期岩基…………………………………………………8
三、東南亞重要水系演化研究……………………………………12
四、研究方法…………………………………………………………………19
4-1 碎屑鋯石同位素示蹤應用……………………………………19
4-2 標本採集……………………………………………………………………20
4-2-1 伊洛瓦底江標本採集……………………………………20
4-2-2 薩爾溫江標本採集…………………………………………20
4-3 分析方法……………………………………………………………………25
4-3-1分析前處理-標本靶的製備……………………………25
4-3-2鈾-鉛定年分析…………………………………………………27
4-3-3 鉿同位素分析…………………………………………………29
五、分析結果………………………………………………………………………30
5-1 伊洛瓦底江流域碎屑鋯石分析結果………………………32
5-2 薩爾溫江流域碎屑鋯石分析結果……………………………39
六、伊洛瓦底江流域演化討論……………………………………………41
6-1伊洛瓦底江流域物源討論……………………………………………41
6-1-1 白堊紀晚期至漸新世晚期…………………………………41
6-1-2 中新世至現代………………………………………………………44
6-2 伊洛瓦底江之水系演化…………………………………………………47
七、薩爾溫江流域物源討論……………………………………………………48
7-1 薩爾溫江口沉積物物源討論…………………………………………48
7-2滇緬馬地塊地殼演化討論…………………………………………………48
7-3東南亞主要河流沉積物物源比較……………………………………50
八、結論………………………………………………………………………………………55
參考文獻………………………………………………………………………………………57
附錄………………………………………………………………………………………………66
dc.language.isozh-TW
dc.subject伊洛瓦底江zh_TW
dc.subject碎屑鋯石zh_TW
dc.subject薩爾溫江zh_TW
dc.subject緬甸zh_TW
dc.subject鈾鉛定年zh_TW
dc.subject鉿同位素zh_TW
dc.subjectHf isotopeen
dc.subjectDetrital zirconen
dc.subjectIrrawaddyen
dc.subjectSalweenen
dc.subjectMyanmaren
dc.subjectU-Pb datingen
dc.title緬甸伊洛瓦底江與薩爾溫江流域碎屑鋯石研究zh_TW
dc.titleDetrital Zircon Study of the Irrawaddy and Salween Rivers in Myanmaren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱美妃(Mei-Fei Chu),李皓揚(Hao-Yang Lee),藍晶瑩(Ching-Ying Lan),李元希(Yuan-His Lee)
dc.subject.keyword碎屑鋯石,伊洛瓦底江,薩爾溫江,緬甸,鈾鉛定年,鉿同位素,zh_TW
dc.subject.keywordDetrital zircon,Irrawaddy,Salween,Myanmar,U-Pb dating,Hf isotope,en
dc.relation.page139
dc.rights.note有償授權
dc.date.accepted2013-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
10.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved