請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61850
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
dc.contributor.author | Tarng-Tzer Suen | en |
dc.contributor.author | 孫溏澤 | zh_TW |
dc.date.accessioned | 2021-06-16T13:15:42Z | - |
dc.date.available | 2020-07-17 | |
dc.date.copyright | 2020-07-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-06-23 | |
dc.identifier.citation | Ahrens, L., Gerwinski, W., Theobald, N. and Ebinghaus, R. (2010) Sources of polyfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: Evidence from their spatial distribution in surface water. Marine Pollution Bulletin 60(2), 255-260. Alvárez’, P.M., Beltrán, F.J., Masa, F.J. and Pocostales, J.P. (2009) A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment. Applied Catalysis B: Environmental 92(3), 393-400. An, D., Westerhoff, P., Zheng, M., Wu, M., Yang, Y. and Chiu, C.-A. (2015) UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon. Water Research 73, 304-310. An, H. and Feng, B. (2010) Desorption of CO2 from activated carbon fibre–phenolic resin composite by electrothermal effect. International Journal of Greenhouse Gas Control 4(1), 57-63. Ania, C.O., Menéndez, J.A., Parra, J.B. and Pis, J.J. (2004) Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon 42(7), 1383-1387. Blanchard, G., Maunaye, M. and Martin, G. (1984) Removal of heavy metals from waters by means of natural zeolites. Water Research 18(12), 1501-1507. Boehm, H.P. (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5), 759-769. Boger, T., Salden, A. and Eigenberger, G. (1997) A combined vacuum and temperature swing adsorption process for the recovery of amine from foundry air. Chemical Engineering and Processing: Process Intensification 36(3), 231-241. Braeken, L., Bettens, B., Boussu, K., Van der Meeren, P., Cocquyt, J., Vermant, J. and Van der Bruggen, B. (2006) Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration. Journal of Membrane Science 279(1), 311-319. Brendel, S., Fetter, É., Staude, C., Vierke, L. and Biegel-Engler, A. (2018) Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environmental Sciences Europe 30(1), 9. Burchell, T.D., Judkins, R.R., Rogers, M.R. and Williams, A.M. (1997) A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon 35(9), 1279-1294. Burtch, N.C., Jasuja, H. and Walton, K.S. (2014) Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews 114(20), 10575-10612. Cai, M., Zhao, Z., Yin, Z., Ahrens, L., Huang, P., Cai, M., Yang, H., He, J., Sturm, R., Ebinghaus, R. and Xie, Z. (2012) Occurrence of Perfluoroalkyl Compounds in Surface Waters from the North Pacific to the Arctic Ocean. Environmental Science Technology 46(2), 661-668. Cao, M.H., Wang, B.B., Yu, H.S., Wang, L.L., Yuan, S.H. and Chen, J. (2010) Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials 179(1), 1143-1146. Carter, K.E. and Farrell, J. (2010) Removal of Perfluorooctane and Perfluorobutane Sulfonate from Water via Carbon Adsorption and Ion Exchange. Separation Science and Technology 45(6), 762-767. Cha, J.S., Park, S.H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C. and Park, Y.-K. (2016) Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry 40, 1-15. Chamarro, E., Marco, A. and Esplugas, S. (2001) Use of fenton reagent to improve organic chemical biodegradability. Water Research 35(4), 1047-1051. Cherbański, R. and Molga, E. (2009) Intensification of desorption processes by use of microwaves—An overview of possible applications and industrial perspectives. Chemical Engineering and Processing: Process Intensification 48(1), 48-58. Chu, S., Letcher, R.J., McGoldrick, D.J. and Backus, S.M. (2016) A New Fluorinated Surfactant Contaminant in Biota: Perfluorobutane Sulfonamide in Several Fish Species. Environmental Science Technology 50(2), 669-675. Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S. and Thomas Choong, S.Y. (2005) Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175(3), 305-316. Chularueangaksorn, P., Tanaka, S., Fujii, S. and Kunacheva, C. (2014) Adsorption of perfluorooctanoic acid (PFOA) onto anion exchange resin, non-ion exchange resin, and granular-activated carbon by batch and column. Desalination and Water Treatment 52(34-36), 6542-6548. Clausse, M., Bonjour, J. and Meunier, F. (2004) Adsorption of gas mixtures in TSA adsorbers under various heat removal conditions. Chemical Engineering Science 59(17), 3657-3670. Codling, G., Vogt, A., Jones, P.D., Wang, T., Wang, P., Lu, Y.L., Corcoran, M., Bonina, S., Li, A., Sturchio, N.C., Rockne, K.J., Ji, K., Khim, J.-S., Naile, J.E. and Giesy, J.P. (2014) Historical trends of inorganic and organic fluorine in sediments of Lake Michigan. Chemosphere 114, 203-209. Cooney, D.O., Nagerl, A. and Hines, A.L. (1983) Solvent regeneration of activated carbon. Water Research 17(4), 403-410. de Jonge, R.J., Breure, A.M. and van Andel, J.G. (1991) Enhanced biodegradation ofo-cresol by activated sludge in the presence of powdered activated carbon. Applied Microbiology and Biotechnology 34(5), 683-687. Deng, S., Nie, Y., Du, Z., Huang, Q., Meng, P., Wang, B., Huang, J. and Yu, G. (2015) Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. Journal of Hazardous Materials 282, 150-157. DeWalle, F.B. and Chian, E.S.K. (1977) Biological regeneration of powdered activated carbon added to activated sludge units. Water Research 11(5), 439-446. Dillon, E.C., Wilton, J.H., Barlow, J.C. and Watson, W.A. (1989) Large surface area activated charcoal and the inhibition of aspirin absorption. Annals of Emergency Medicine 18(5), 547-552. Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J. and Yu, G. (2014) Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. Journal of Hazardous Materials 274, 443-454. Du, Z., Deng, S., Liu, D., Yao, X., Wang, Y., Lu, X., Wang, B., Huang, J., Wang, Y., Xing, B. and Yu, G. (2016) Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process. Chemical Engineering Journal 290, 405-413. Ehrhardt, H.M. and Rehm, H.J. (1985) Phenol degradation by microorganisms adsorbed on activated carbon. Applied Microbiology and Biotechnology 21(1), 32-36. Fromme, H., Tittlemier, S.A., Völkel, W., Wilhelm, M. and Twardella, D. (2009) Perfluorinated compounds – Exposure assessment for the general population in western countries. International Journal of Hygiene and Environmental Health 212(3), 239-270. Fu, K., Yue, Q., Gao, B., Wang, Y. and Li, Q. (2017) Activated carbon from tomato stem by chemical activation with FeCl2. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529, 842-849. Fujii, S., Polprasert, C., Tanaka, S., Hong Lien, N.P. and Qiu, Y. (2007) New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds – a review paper. Journal of Water Supply: Research and Technology-Aqua 56(5), 313-326. Garner, C.P. and Dent, J.C. (1989) Microwave Assisted Regeneration of Diesel Particulate Traps. SAE International. Glynn, A., Berger, U., Bignert, A., Ullah, S., Aune, M., Lignell, S. and Darnerud, P.O. (2012) Perfluorinated Alkyl Acids in Blood Serum from Primiparous Women in Sweden: Serial Sampling during Pregnancy and Nursing, And Temporal Trends 1996–2010. Environmental Science Technology 46(16), 9071-9079. Gosset, T., Trancart, J.-L. and Thévenot, D.R. (1986) Batch metal removal by peat. Kinetics and thermodynamics. Water Research 20(1), 21-26. Gu, J. and Bart, H.-J. (2005) Heat and mass transfer in steam desorption of an activated carbon adsorber. International Communications in Heat and Mass Transfer 32(3), 296-304. Gu, J., Faqir, N.M. and Bart, H.J. (1999) Drying of an Activated Carbon Column after Steam Regeneration. Chemical Engineering Technology 22(10), 859-864. Guo, D., Shi, Q., He, B. and Yuan, X. (2011) Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater. Journal of Hazardous Materials 186(2), 1788-1793. Guo, Y. and Du, E. (2012) The Effects of Thermal Regeneration Conditions and Inorganic Compounds on the Characteristics of Activated Carbon Used in Power Plant. Energy Procedia 17, 444-449. Høisæter, Å., Pfaff, A. and Breedveld, G.D. (2019) Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. Journal of Contaminant Hydrology 222, 112-122. Harriott, P. and Cheng, A.T.-Y. (1988) Kinetics of spent activated carbon regeneration. AIChE Journal 34(10), 1656-1662. He, W., LÜ, G., Cui, J., Wu, L. and Liao, L. (2012) Regeneration of Spent Activated Carbon by Yeast and Chemical Method. Chinese Journal of Chemical Engineering 20(4), 659-664. Henglein, A. and Kormann, C. (1985) Scavenging of OH Radicals Produced in the Sonolysis of Water. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 48(2), 251-258. Ho, Y.S. and McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34(5), 451-465. Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 95(1), 69-96. Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., Kiatagawa, H. and Arakawa, R. (2005) Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. Environmental Science Technology 39(7), 2383-2388. Huling, S.G., Kan, E. and Wingo, C. (2009) Fenton-driven regeneration of MTBE-spent granular activated carbon—Effects of particle size and iron amendment procedures. Applied Catalysis B: Environmental 89(3), 651-658. Hutson, A., Ko, S. and Huling, S.G. (2012) Persulfate oxidation regeneration of granular activated carbon: Reversible impacts on sorption behavior. Chemosphere 89(10), 1218-1223. Jacob, J., Chia, L.H.L. and Boey, F.Y.C. (1995) Thermal and non-thermal interaction of microwave radiation with materials. Journal of Materials Science 30(21), 5321-5327. Jiang, J.-Q., Graham, N., André, C., Kelsall, G.H. and Brandon, N. (2002) Laboratory study of electro-coagulation–flotation for water treatment. Water Research 36(16), 4064-4078. Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W. and Miles, N.J. (2002) Microwave heating applications in environmental engineering—a review. Resources, Conservation and Recycling 34(2), 75-90. Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.-U. and Watanabe, Y. (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science 227(1), 113-121. Kimura, M. and Miyamoto, I. (1994) Discovery of the Activated-Carbon Radical AC+ and the Novel Oxidation-Reactions Comprising the AC/AC+ Cycle as a Catalyst in an Aqueous Solution. Bulletin of the Chemical Society of Japan 67(9), 2357-2360. Kiso, Y., Sugiura, Y., Kitao, T. and Nishimura, K. (2001) Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. Journal of Membrane Science 192(1), 1-10. Kissa, E. (2001) Fluorinated surfactants and repellents (Vol. 97), CRC Press. Kolaczkowski, S.T., Plucinski, P., Beltran, F.J., Rivas, F.J. and McLurgh, D.B. (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal 73(2), 143-160. Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A. and Seed, J. (2007) Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings. Toxicological Sciences 99(2), 366-394. Lee, Y.-C., Wang, P.-Y., Lo, S.-L. and Huang, C.P. (2017) Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology 173, 280-285. Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z. and Zhao, D. (2020) Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal 380, 122506. Li, J., Lu, R., Dou, B., Ma, C., Hu, Q., Liang, Y., Wu, F., Qiao, S. and Hao, Z. (2012a) Porous Graphitized Carbon for Adsorptive Removal of Benzene and the Electrothermal Regeneration. Environmental Science Technology 46(22), 12648-12654. Li, X., Zhang, P., Jin, L., Shao, T., Li, Z. and Cao, J. (2012b) Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environmental Science Technology 46(10), 5528-5534. Liao, Z. and Farrell, J. (2009) Electrochemical oxidation of perfluorobutane sulfonate using boron-doped diamond film electrodes. Journal of Applied Electrochemistry 39(10), 1993-1999. Lieder, P.H., York, R.G., Hakes, D.C., Chang, S.-C. and Butenhoff, J.L. (2009) A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rats. Toxicology 259(1), 33-45. Lim, J.-L. and Okada, M. (2005) Regeneration of granular activated carbon using ultrasound. Ultrasonics Sonochemistry 12(4), 277-282. Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthès, V. and Krimissa, M. (2007) Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry 22(2), 249-275. Lindstrom, A.B., Strynar, M.J. and Libelo, E.L. (2011) Polyfluorinated Compounds: Past, Present, and Future. Environmental Science Technology 45(19), 7954-7961. Liu, S.X., Sun, C.L. and Zhang, S.R. (2004a) Photocatalytic Regeneration of Exhausted Activated Carbon Saturated with Phenol. Bulletin of Environmental Contamination and Toxicology 73(6), 1017-1024. Liu, X., Quan, X., Bo, L., Chen, S. and Zhao, Y. (2004b) Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon 42(2), 415-422. Liu, X., Quan, X., Bo, L., Chen, S., Zhao, Y. and Chang, M. (2004c) Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation. Applied Catalysis A: General 264(1), 53-58. Lordgooei, M., Carmichael, K.R., Kelly, T.W., Rood, M.J. and Larson, S.M. (1996) Activated carbon cloth adsorption-cryogenic system to recover toxic volatile organic compounds. Gas Separation Purification 10(2), 123-130. Möller, A., Ahrens, L., Surm, R., Westerveld, J., van der Wielen, F., Ebinghaus, R. and de Voogt, P. (2010) Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environmental Pollution 158(10), 3243-3250. Maroto-Valer, M.M., Dranca, I., Lupascu, T. and Nastas, R. (2004) Effect of adsorbate polarity on thermodesorption profiles from oxidized and metal-impregnated activated carbons. Carbon 42(12), 2655-2659. Martin, R.J. and Ng, W.J. (1987) The repeated exhaustion and chemical regeneration of activated carbon. Water Research 21(8), 961-965. Matatov-Meytal, Y.I. and Sheintuch, M. (1997) Abatement of Pollutants by Adsorption and Oxidative Catalytic Regeneration. Industrial Engineering Chemistry Research 36(10), 4374-4380. McQuillan, R.V., Stevens, G.W. and Mumford, K.A. (2018) The electrochemical regeneration of granular activated carbons: A review. Journal of Hazardous Materials 355, 34-49. Menéndez, J.A., Menéndez, E.M., García, A., Parra, J.B. and Pis, J.J. (1999a) Thermal Treatment of Active Carbons: a Comparison Between Microwave and Electrical Hating. Journal of Microwave Power and Electromagnetic Energy 34(3), 137-143. Menéndez, J.A., Menéndez, E.M., Iglesias, M.J., Garcı́a, A. and Pis, J.J. (1999b) Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon 37(7), 1115-1121. Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K. and Maeda, Y. (2005) Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid. Environmental Science Technology 39(9), 3388-3392. Muranaka, C.T., Julcour, C., Wilhelm, A.-M., Delmas, H. and Nascimento, C.A.O. (2010) Regeneration of Activated Carbon by (Photo)-Fenton Oxidation. Industrial Engineering Chemistry Research 49(3), 989-995. Nabais, J.M.V., Laginhas, C.E.C., Carrott, P.J.M. and Ribeiro Carrott, M.M.L. (2011) Production of activated carbons from almond shell. Fuel Processing Technology 92(2), 234-240. Nahm, S.W., Shim, W.G., Park, Y.-K. and Kim, S.C. (2012) Thermal and chemical regeneration of spent activated carbon and its adsorption property for toluene. Chemical Engineering Journal 210, 500-509. Naile, J.E., Khim, J.S., Hong, S., Park, J., Kwon, B.-O., Ryu, J.S., Hwang, J.H., Jones, P.D. and Giesy, J.P. (2013) Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. Chemosphere 90(2), 387-394. Narbaitz, R.M. and Cen, J. (1997) Alternative methods for determining the percentage regeneration of activated carbon. Water Research 31(10), 2532-2542. Ochoa-Herrera, V. and Sierra-Alvarez, R. (2008) Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 72(10), 1588-1593. Pérez, F., Nadal, M., Navarro-Ortega, A., Fàbrega, F., Domingo, J.L., Barceló, D. and Farré, M. (2013) Accumulation of perfluoroalkyl substances in human tissues. Environment International 59, 354-362. Persson, S., Rotander, A., Kärrman, A., van Bavel, B. and Magnusson, U. (2013) Perfluoroalkyl acids in subarctic wild male mink (Neovison vison) in relation to age, season and geographical area. Environment International 59, 425-430. Petkovska, M. and Mitrović, M. (1994) Microscopic modelling of electrothermal desorption. The Chemical Engineering Journal and the Biochemical Engineering Journal 53(3), 157-165. Prevedouros, K., Cousins, I.T., Buck, R.C. and Korzeniowski, S.H. (2006) Sources, Fate and Transport of Perfluorocarboxylates. Environmental Science Technology 40(1), 32-44. Punyapalakul, P., Suksomboon, K., Prarat, P. and Khaodhiar, S. (2013) Effects of Surface Functional Groups and Porous Structures on Adsorption and Recovery of Perfluorinated Compounds by Inorganic Porous Silicas. Separation Science and Technology 48(5), 775-788. Qu, Y., Zhang, C., Li, F., Chen, J. and Zhou, Q. (2010) Photo-reductive defluorination of perfluorooctanoic acid in water. Water Research 44(9), 2939-2947. Rege, S.U., Yang, R.T. and Cain, C.A. (1998) Desorption by ultrasound: Phenol on activated carbon and polymeric resin. AIChE Journal 44(7), 1519-1528. Renner, R. (2006) The long and the short of perfluorinated replacements. Environmental Science Technology 40(1), 12-13. Rubio, J., Souza, M.L. and Smith, R.W. (2002) Overview of flotation as a wastewater treatment technique. Minerals Engineering 15(3), 139-155. Sainz-Diaz, C.I. and Griffiths, A.J. (2000) Activated carbon from solid wastes using a pilot-scale batch flaming pyrolyser. Fuel 79(15), 1863-1871. Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M.J. and Izquierdo, C. (2015a) Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration. Microporous and Mesoporous Materials 202, 259-276. Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M.J. and Izquierdo, C. (2015b) Regeneration of carbonaceous adsorbents. Part II: Chemical, Microbiological and Vacuum Regeneration. Microporous and Mesoporous Materials 202, 277-296. Salvador, F., Sánchez-Montero, M.J., Salvador, A. and Martín, M.J. (2005) Study of the energetic heterogeneity of the adsorption of phenol onto activated carbons by TPD under supercritical conditions. Applied Surface Science 252(3), 641-646. San Miguel, G., Lambert, S.D. and Graham, N.J.D. (2001) The regeneration of field-spent granular-activated carbons. Water Research 35(11), 2740-2748. Scheringer, M., Trier, X., Cousins, I.T., de Voogt, P., Fletcher, T., Wang, Z. and Webster, T.F. (2014) Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 114, 337-339. Scholz, M. and Martin, R.J. (1997) Ecological equilibrium on biological activated carbon. Water Research 31(12), 2959-2968. Schork, J.M. and Fair, J.R. (1988) Steaming of activated carbon beds. Industrial Engineering Chemistry Research 27(8), 1545-1547. Schröder, H.F. and Meesters, R.J.W. (2005) Stability of fluorinated surfactants in advanced oxidation processes—A follow up of degradation products using flow injection–mass spectrometry, liquid chromatography–mass spectrometry and liquid chromatography–multiple stage mass spectrometry. Journal of Chromatography A 1082(1), 110-119. Schröder, H.F., José, H.J., Gebhardt, W., Moreira, R.F.P.M. and Pinnekamp, J. (2010) Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants. Water Science and Technology 61(12), 3208-3215. Schweiger, T.A.J. and LeVan, M.D. (1993) Steam regeneration of solvent adsorbers. Industrial Engineering Chemistry Research 32(10), 2418-2429. Sheintuch, M. and Matatov-Meytal, Y.I. (1999) Comparison of catalytic processes with other regeneration methods of activated carbon. Catalysis Today 53(1), 73-80. Shende, R.V. and Mahajani, V.V. (2002) Wet oxidative regeneration of activated carbon loaded with reactive dye. Waste Management 22(1), 73-83. Shouxin, L., Yan, W. and Wenchao, Z. (2001) Progress in Activated Carbon Regeneration. JOURNAL-NORTHEAST FORESTRY UNIVERSITY-CHINESE EDITION- 29(3), 61-63. Sirotkin, A.S., Koshkina, L.Y. and Ippolitov, K.G. (2001) The BAC-process for treatment of waste water Containing non-ionogenic synthetic surfactants. Water Research 35(13), 3265-3271. Steinle-Darling, E. and Reinhard, M. (2008) Nanofiltration for Trace Organic Contaminant Removal: Structure, Solution, and Membrane Fouling Effects on the Rejection of Perfluorochemicals. Environmental Science Technology 42(14), 5292-5297. Tai, H.-S. and Jou, C.-J.G. (1999) Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere 38(11), 2667-2680. Tang, C.Y., Fu, Q.S., Robertson, A.P., Criddle, C.S. and Leckie, J.O. (2006) Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environmental Science Technology 40(23), 7343-7349. Tang, H., Xiang, Q., Lei, M., Yan, J., Zhu, L. and Zou, J. (2012) Efficient degradation of perfluorooctanoic acid by UV–Fenton process. Chemical Engineering Journal 184, 156-162. Taniyasu, S., Kannan, K., So, M.K., Gulkowska, A., Sinclair, E., Okazawa, T. and Yamashita, N. (2005) Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. Journal of Chromatography A 1093(1), 89-97. Tao, Y., Wu, C.-Y. and Mazyck, D.W. (2006) Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration. Chemosphere 65(1), 35-42. Toh, R.-H., Lim, P.-E., Seng, C.-E. and Adnan, R. (2013) Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol. Bioresource Technology 143, 265-274. Torrents, A., Damera, R. and Hao, O.J. (1997) Low-temperature thermal desorption of aromatic compounds from activated carbon. Journal of Hazardous Materials 54(3), 141-153. Van de Vijver, K.I., Hoff, P., Das, K., Brasseur, S., Van Dongen, W., Esmans, E., Reijnders, P., Blust, R. and De Coen, W. (2005) Tissue Distribution of Perfluorinated Chemicals in Harbor Seals (Phoca vitulina) from the Dutch Wadden Sea. Environmental Science Technology 39(18), 6978-6984. van Wyk, E.J., Bradshaw, S.M. and de Swardt, J.B. (1998) The Dependence of Microwave Regeneration of Activated Carbon on Time and Temperature. Journal of Microwave Power and Electromagnetic Energy 33(3), 151-157. Vasanth Kumar, K. and Sivanesan, S. (2007) Sorption isotherm for safranin onto rice husk: Comparison of linear and non-linear methods. Dyes and Pigments 72(1), 130-133. Vecitis, C.D., Park, H., Cheng, J., Mader, B.T. and Hoffmann, M.R. (2009) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Frontiers of Environmental Science Engineering in China 3(2), 129-151. Wang, L., Peng, Y., Runge, K. and Bradshaw, D. (2015) A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering 70, 77-91. Wang, W., Du, Z., Deng, S., Vakili, M., Ren, L., Meng, P., Maimaiti, A., Wang, B., Huang, J., Wang, Y. and Yu, G. (2018) Regeneration of PFOS loaded activated carbon by hot water and subsequent aeration enrichment of PFOS from eluent. Carbon 134, 199-206. Wang, Z., Cousins, I.T., Scheringer, M. and Hungerbühler, K. (2013) Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environment International 60, 242-248. Wang, Z., MacLeod, M., Cousins, I.T., Scheringer, M. and Hungerbühler, K. (2011) Using COSMOtherm to predict physicochemical properties of poly-and perfluorinated alkyl substances (PFASs). Environ. Chem 8(4), 389-398. Yang, R.T. (2003) Adsorbents: fundamentals and applications, John Wiley Sons. Yu, F.D., Luo, L. and Grevillot, G. (2007) Electrothermal swing adsorption of toluene on an activated carbon monolith: Experiments and parametric theoretical study. Chemical Engineering and Processing: Process Intensification 46(1), 70-81. Zhang, G., Qu, J., Liu, H., Cooper, A.T. and Wu, R. (2007) CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68(6), 1058-1066. Zhang, G., Wang, S. and Liu, Z. (2003) Ultrasonic Regeneration of Granular Activated Carbon. Environmental Engineering Science 20(1), 57-64. Zhao, C., Zhang, J., He, G., Wang, T., Hou, D. and Luan, Z. (2013) Perfluorooctane sulfonate removal by nanofiltration membrane the role of calcium ions. Chemical Engineering Journal 233, 224-232. Zhao, Y.G., Wong, C.K.C. and Wong, M.H. (2012) Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on Asian countries. Chemosphere 89(4), 355-368. Zhou, M.H. and Lei, L.C. (2006) Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor. Electrochimica Acta 51(21), 4489-4496. Zhou, Z., Liang, Y., Shi, Y., Xu, L. and Cai, Y. (2013) Occurrence and Transport of Perfluoroalkyl Acids (PFAAs), Including Short-Chain PFAAs in Tangxun Lake, China. Environmental Science Technology 47(16), 9249-9257. Zhuo, Q., Deng, S., Yang, B., Huang, J., Wang, B., Zhang, T. and Yu, G. (2012) Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochimica Acta 77, 17-22. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61850 | - |
dc.description.abstract | 全氟化合物為具有良好的疏水及疏油特性,被廣泛運用於工業與民生用品中,但長碳鏈全氟化合物 (C8) 被證實具有持久性、生物累積性、毒性而逐漸被淘汰,轉而使用毒性及生物累積性較小的短碳鏈替代品 (C4),如全氟丁烷磺酸 (Perfluorobutane sulfonate, PFBS)。然而,隨著使用量的上升,C4在環境中陸續被檢測出來,且因相關資料的缺乏導致風險評估困難,使得發展去除C4技術成為重要的議題。 本研究以A、MU、F400三種廠牌之顆粒活性碳在不同pH值下吸附PFBS,探討其吸附動力學及等溫吸附線。結果顯示,在pH值為3時皆有最大的吸附速率 (F400>MU>A) 及吸附量 (F400>A>MU)。吸附動力模式中,皆較符合擬二階動力模式;等溫吸附模式中,A與F400較符合Langmuir等溫吸附理論,而MU較符合Freundlich等溫吸附理論。 在活性碳再生的部分,將吸附飽和之活性碳透過調整微波功率及時間,探討最佳再生效率之條件。結果顯示,A、MU在功率450 W、微波時間5分鐘,F400在功率450 W、微波時間15分鐘時有最大再生效率,分別為77.95、92.64、81.06 %。 在BET分析中,A、F400的比表面積有下降、MU有上升的現象;EDS分析中,吸附飽和之活性碳在微波後,F元素有下降的趨勢。 再生效率以及吸附量皆會隨著再生次數越多而降低。A在第2次微波後再生效率下降,MU呈現隨再生次數增加而緩慢下降,第4次微波仍有76.95 %,F400在第4次微波後下降至71.77 %。以吸附量來看,每次微波由大至小皆為F400>MU>A。 | zh_TW |
dc.description.abstract | Perfluorinated chemicals (PFCs) which have great hydrophobic and oleophobic properties are widely used in industrial and household products. Among these, long-chain PFSs (C8) have been eliminated gradually due to their persistent, bioaccumulation and toxicity. Instead, C8 are substituted with short-chain PFSs (C4) such as perfluorobutane sulfonate (PFBS), with low toxicity and bioaccumulation. However, with the increase in usage, C4 has been detected in the environment, and the lack of relevant information has led to difficulties in risk assessment, making the development of C4 removal technology an important issue. In this study, three brands of granular activated carbon, A, MU, and F400, were used to adsorb PFBS at different pH, and kinetics and isotherms were discussed. The results show that all had the maximum adsorption rate (F400>MU>A) and adsorption capacity (F400>A>MU) at pH 3. In the adsorption kinetics, the pseudo-second order model fitted all the adsorption data well; in adsorption isotherms, A and F400 were better described by the Langmuir isotherm, and MU was better described by the Freundlich isotherm. In microwave regeneration part, the power and time would be adjusted and applied to the saturated activated carbons to find the best regeneration efficiency. The results show that A and MU at 450 W for 5 minutes, and F400 at 450 W for 15 minutes had the maximum regeneration efficiency. The regeneration efficiency were 77.95, 92.64 and 81.06%, respectively. In the BET analysis, the specific surface area of A and F400 decreased, and MU increased; in the EDS analysis, the F element on the saturated activated carbons had a tendency to decline after microwave regeneration. Both the regeneration efficiency and the adsorption capacity would decrease as the time of regeneration increased. The regeneration efficiency of A decreased after the second microwave, and MU showed a slow decline with the increase of the times of regeneration. The fourth microwave still had 76.95 %, and F400 decreased after the fourth microwave. In terms of adsorption capacity, the order was F400>MU>A in each regeneration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:15:42Z (GMT). No. of bitstreams: 1 U0001-2006202018380000.pdf: 4187004 bytes, checksum: f21b8396e85ef23f9181c11eee61a5ff (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書 I 致謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 前言 1 1.1 研究源起 1 1.2 研究目的 2 1.3 研究內容 2 第二章 文獻回顧 3 2.1 全氟化合物 3 2.1.1 長碳鏈全氟化合物 3 2.1.2 短碳鏈全氟化合物 3 2.2 全氟化合物去除方法 7 2.2.1 活性碳吸附法 7 2.2.2 薄膜過濾法 8 2.2.3 浮除法 8 2.2.4 光化學氧化法 9 2.2.5 超聲波氧化法 9 2.2.6 電化學氧化法 10 2.2.7 其他高級氧化處理技術 10 2.3 活性碳 12 2.3.1 活性碳基本特性 12 2.3.2 孔洞型態 12 2.3.3 表面官能基 13 2.4 吸附模式 15 2.4.1 吸附動力模式 15 2.4.2 等溫吸附平衡模式 16 2.5 活性碳再生處理 18 2.5.1 熱再生法 18 2.5.2 化學再生法 20 2.5.3 生物再生法 22 2.5.4 微波輻射再生法 22 第三章 材料與方法 30 3.1 實驗內容與架構 30 3.1.1 吸附實驗步驟 30 3.1.2 微波再生實驗步驟 31 3.1.3 品質管制 31 3.2 實驗藥品及設備 35 3.2.1 實驗藥品 35 3.2.2 實驗設備 36 第四章 結果與討論 43 4.1 活性碳物化特性分析 43 4.1.1 界達電位分析 43 4.1.2 比表面積與孔徑分析 44 4.1.3 掃描式電子顯微鏡分析 46 4.2 背景實驗 47 4.2.1 玻璃反應器與塑膠反應器選擇 47 4.2.2 空白分析 47 4.2.3 碳重與反應體積比例選擇 48 4.3 吸附動力模式 52 4.3.1 pH值對去除率與吸附速率的影響 52 4.3.2 活性碳種類對吸附速率的影響 52 4.4 等溫吸附平衡模式 58 4.5 微波輻射再生 60 4.5.1 微波功率對再生效率的影響 60 4.5.2 微波時間對再生效率的影響 64 4.6 微波後活性碳物化特性分析 66 4.6.1 比表面積與孔徑分析 66 4.6.2 掃描式電子顯微鏡分析 69 4.7 吸附/微波再生循環實驗 71 第五章 結論與建議 74 5.1 結論 74 5.2 建議 75 參考文獻 76 附錄 87 | |
dc.language.iso | zh-TW | |
dc.title | 以顆粒活性碳吸附全氟丁烷磺酸及其微波再生之研究 | zh_TW |
dc.title | Adsorption of Perfluorobutane Sulfonate with Granular Activated Carbon and its Microwave Regeneration | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉雅瑄(Ya-Hsuan Liou),胡景堯(Ching-Yao Hu) | |
dc.subject.keyword | 全氟丁烷磺酸,顆粒活性碳,吸附,微波再生, | zh_TW |
dc.subject.keyword | perfluorobutane sulfonate,granular activated carbon,adsorption,microwave regeneration, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU202001081 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-06-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2006202018380000.pdf 目前未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。