Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61837
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張顏暉(Yuan-Huei Chang)
dc.contributor.authorYan-Ting Chuangen
dc.contributor.author莊彥庭zh_TW
dc.date.accessioned2021-06-16T13:15:11Z-
dc.date.available2014-08-17
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-07-29
dc.identifier.citation[1] Chang, Wen-Yuan, et al. 'Resistive switching behaviors of ZnO nanorod layers.'Applied Physics Letters 96.24 (2010): 242109-242109.
[2] Soci, Cesare, et al. 'ZnO nanowire UV photodetectors with high internal gain.'Nano Letters 7.4 (2007): 1003-1009.
[3] Hsu, Chia-Wei, and Li-Jen Chou. 'Bipolar Resistive Switching of Single Gold-in-Ga2O3 Nanowire.' Nano letters 12.8 (2012): 4247-4253.
[4] Xu, N., et al. 'Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention.' Semiconductor Science and Technology 23.7 (2008): 075019.
[5] Xu, N., et al. 'A unified physical model of switching behavior in oxide-based RRAM.' VLSI Technology, 2008 Symposium on. IEEE, 2008.
[6] Wong, H-SP, et al. 'Metal–oxide RRAM.' Proceedings of the IEEE 100.6 (2012): 1951-1970.
[7] Oka, Keisuke, et al. 'Spatial Nonuniformity in Resistive-Switching Memory Effects of NiO.' Journal of the American Chemical Society 133.32 (2011): 12482-12485.
[8] Tseng, Zong-Liang, et al. 'Electrical bistability in hybrid ZnO nanorod/polymethylmethacrylate heterostructures.' Applied Physics Letters97.21 (2010): 212103-212103.
[9] Zhou, P., et al. 'Role of TaON interface for CuxO resistive switching memory based on a combined model.' Applied Physics Letters 94.5 (2009): 053510-053510.
[10] Chen, A., et al. 'Switching characteristics of CuO metal-insulator-metal resistive memory.' Applied Physics Letters 91 (2007): 123517.
[11] Zheng, K., et al. 'Resistive switching in a GaOx-NiOx pn heterojunction.' Applied Physics Letters 101.14 (2012): 143110-143110.
[12] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,'先進記憶體簡介',國研科技,1,31,(2004)
[13] Lai, Stephan, and Tyler Lowrey. 'OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications.' Electron Devices Meeting, 2001. IEDM'01. Technical Digest. International. IEEE, 2001.
[14] Tehrani, Said, et al. 'Progress and outlook for MRAM technology.' Magnetics, IEEE Transactions on 35.5 (1999): 2814-2819.
[15] Kim, Kinam, and Gwan-Hyeob Koh. 'Future memory technology including emerging new memories.' Microelectronics, 2004. 24th International Conference on. Vol. 1. IEEE, 2004.
[16] Beck, A., et al. 'Reproducible switching effect in thin oxide films for memory applications.' Applied Physics Letters 77.1 (2000): 139-141.
[17] Szot, Krzysztof, et al. 'Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3.' Nature materials 5.4 (2006): 312-320.
[18] Baek, I. G., et al. 'Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses.' Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. IEEE, 2004.
[19] Sawa, Akihito. 'Resistive switching in transition metal oxides.' Materials Today11.6 (2008): 28-36.
[20] Kim, Kyung Min, Doo Seok Jeong, and Cheol Seong Hwang. 'Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook.' Nanotechnology 22.25 (2011): 254002.
[21] Gao, S., et al. 'Formation process of conducting filament in planar organic resistive memory.' Applied Physics Letters 102.14 (2013): 141606-141606.
[22] Hwang, Sun Kak, et al. 'Flexible Multilevel Resistive Memory with Controlled Charge Trap B-and N-Doped Carbon Nanotubes.' Nano letters 12.5 (2012): 2217-2221.
[23] Lee, Myoung-Jae, et al. 'A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures.'Nature materials 10.8 (2011): 625-630.
[24] Kim, Sungho, et al. 'Physical electro-thermal model of resistive switching in bi-layered resistance-change memory.' Scientific reports 3 (2013).
[25] Lee, H. Y., et al. 'Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM.' Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
[26] Lee, M‐J., et al. 'A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories.' Advanced Materials 19.1 (2007): 73-76.
[27] Kwon, Deok-Hwang, et al. 'Atomic structure of conducting nanofilaments in TiO2 resistive switching memory.' Nature nanotechnology 5.2 (2010): 148-153.
[28] Yang, J. Joshua, et al. 'Memristive switching mechanism for metal/oxide/metal nanodevices.' Nature nanotechnology 3.7 (2008): 429-433.
[29] Tian, He, et al. 'Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode.' Nano letters (2013).
[30] Wang, Lu-Hao, et al. 'The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories.' Applied Physics Letters 100.6 (2012): 063509-063509.
[31] Sekhar, K. C., et al. 'Semiconductor layer thickness impact on optical and resistive switching behavior of pulsed laser deposited BaTiO3/ZnO heterostructures.' Applied Physics Letters 102 (2013): 212903.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61837-
dc.description.abstract本論文在研究氧化鋅奈米陣列與氧化銅PN異質接面的製程與電阻轉換行為。首先利用水熱法在ITO基板上生長氧化鋅奈米柱陣列,接著將銅薄膜沉積在氧化鋅奈米柱陣列的頂端,並以熱氧化法形成氧化銅,其中我們將氧化鋅奈米柱之間的空隙用光阻層填滿作以減少漏電流;並利用掃描式電子顯微鏡,光激螢光,以及X射線繞射圖型分別作幾何結構、發光結構和成分上的分析
電壓電流的量測結果觀察到PN接面二極體的整流特性,並且在經過forming process後,我們可以明顯地觀察到雙極性電阻轉換行為,以及大約相差10倍的高低阻態之電流比例。我們元件運作的整體操作電流非常小,約在10-7安培的電流等級。此外,不論於SET或者RESET的步驟中、都可以觀察到元件自我限流的特性;即在SET與RESET的過程中,電流同時都有減少的趨勢。
為了瞭解電極對於元件電阻轉換的影響,我們將不同種類的電極蒸鍍在樣品上,結果顯示轉換的行對於不同的電極幾乎沒有影響。最後,我們提出一個模型,推測電阻轉換行為是因為於空乏區的空缺遷移導致,並且成功地解釋了所觀察到的實驗結果。
zh_TW
dc.description.abstractThe growth and bipolar resistive switching behavior of ZnO nanorods / CuO PN heterojunction are reported in this thesis. ZnO nanorods were grown on ITO substrate by using hydrothermal method. A Cu layer was then grown on top of the ZnO nanorods and oxidized to become CuO, but before the growth of the Cu layer, the empty spaces between nanorods were filled with photo-resist to prevent current leakage. Scanning electron microscope, Photoluminescence and X-Ray diffraction were used to study the surface morphology and the crystalline structure of the sample and the results indicate that the sample have good crystalline quality and optical properties.
Typical PN junction rectifying behavior was observed for the sample in the current- voltage measurement. After the forming process, the bipolar switching behavior can be clearly observed with a high/low ratio of about 10 between high resistance state and low resistance state. The operation current is very low in our device, and it can be operated at a current level of 10-7 A. In additions, current self- compliance is observed in both the set and reset processes; the current in the device decreases in both the set and rest processes.
Several different kinds of electrodes were deposited on the samples to study the effect of the electrodes on the switching behavior of the devices, and the results indicate that the switching behavior is electrode-independent. A model which takes into account of the migration of vacancies in the depletion region is proposed and can explain successfully the observed experimental results.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:15:11Z (GMT). No. of bitstreams: 1
ntu-102-R00245002-1.pdf: 8489729 bytes, checksum: 80e58e0a12c56fba2d9862bc6b6c50b2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 #
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的與動機 2
第二章 理論基礎 6
2.1. 次世代非揮發性記憶體原理 6
2.1.1. 鐵電隨機記憶體(FeRAM) 6
2.1.2. 相變化隨機記憶體(PCRAM) 7
2.1.3. 磁阻隨機記憶體(MRAM) 8
2.1.4. 快閃記憶體(Flash Memory) 9
2.2. 電阻式非揮發性記憶體原理 10
2.2.1. 電阻轉換行為之分類 11
2.2.2. 雙極記憶體電阻轉換行為之機制與原理 13
2.3. 介電層之導電路徑 19
2.4. 材料介紹 20
2.5. 近代重要RRAM元件介紹 21
2.5.1. Ta2O5-x/TaO2-x 21
2.5.2. HfO2 24
2.5.3. NiO 26
2.5.4. TiO2 28
2.5.5. Graphene/Graphene oxide 30
2.5.6. GaOx-NiOx heterojunction 32
第三章 實驗儀器原理 34
3.1. 化學氣相沉積(Chemical Vapor Deposition) 34
3.2. 掃描式電子顯微鏡(Scanning Electron Microscopy) 35
3.3. 光激螢光(Photoluminescence) 36
3.4. X射線繞射(X-ray diffraction) 37
3.5. 濺鍍系統(Sputtering) 38
3.6. 電壓電流量測系統(I-V measurement system) 38
第四章 實驗流程 39
4.1. 水熱法成長氧化鋅奈米柱陣列 40
4.1.1. 基板準備 40
4.1.2. 水熱法成長氧化鋅奈米柱陣列 40
4.1.3. 樣品熱處理 41
4.2. 沉積氧化銅薄膜 41
4.2.1. 光組絕緣層之塗佈 41
4.2.2. 沉積銅薄膜 41
4.2.3. 熱氧化法製備氧化銅 42
4.3. 電阻式記憶體元件之電極製作 43
第五章 結果與討論 44
5.1. 元件晶格結構與成分分析 44
5.1.1. 氧化鋅奈米柱陣列之光學性質 44
5.1.2. 元件晶格結構分析 45
5.1.3. 掃描式電子顯微鏡下之結構分析 46
5.2. 氧化鋅奈米柱陣列/氧化銅異質接面記憶體元件之電性分析 48
5.2.1. 氧化鋅奈米柱陣列/氧化銅異質接面之電壓電流特性 49
5.2.2. 記憶體元件之電阻轉換行為 50
5.2.3. 電化學沉積法製備氧化銅對於元件電阻轉換行為之影響 54
5.2.4. 上電極金屬種類對於電阻轉換行為之分析 57
第六章 結論 62
參考文獻 64
dc.language.isozh-TW
dc.subject自我限流zh_TW
dc.subject氧化鋅zh_TW
dc.subject氧化銅zh_TW
dc.subject電阻式記憶體zh_TW
dc.subject異質接面zh_TW
dc.subject電阻轉換zh_TW
dc.subjectRRAMen
dc.subjectSelf-complianceen
dc.subjectZnOen
dc.subjectCuOen
dc.subjectheterojunctionen
dc.subjectswitching behavioren
dc.title具低操作電流與自我限流特性之氧化鋅奈米柱陣列/氧化銅薄膜異質接面結構之雙極性電阻轉換行為zh_TW
dc.titleSelf-compliance bipolar switching behavior in a ZnO NRs/CuO p-n heterojuntion with low operating currenten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永芳(Yang-Fang Chen),梁啟德(Chi-Te Liang)
dc.subject.keyword自我限流,氧化鋅,氧化銅,電阻式記憶體,異質接面,電阻轉換,zh_TW
dc.subject.keywordSelf-compliance,ZnO,CuO,heterojunction,RRAM,switching behavior,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2013-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved