請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61822完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉進賢 | |
| dc.contributor.author | Kuang-Hsing Hsieh | en |
| dc.contributor.author | 謝廣興 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:14:34Z | - |
| dc.date.available | 2013-08-17 | |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | 1. Liu, C.S., Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics, 2001. 36(7): pp. 1047-1068.
2. Chen, Y.W., Liu, C.S., and Chang, J.R., A chaos detectable and time step-size adaptive numerical scheme for nonlinear dynamical systems. Journal of Sound and Vibration, 2006. 299(4-5): pp. 977-989. 3. Zhang, S.Y. and Deng, Z.C., A simple and efficient fourth-order approximation solution for nonlinear dynamic system. Mechanics Research Communications, 2004. 31(2): pp. 221-228. 4. Liu, C.S. and Atluri, S.N., A novel time integration method for solving a large system of non-linear algebraic equations. CMES-Computer Modeling in Engineering & Sciences, 2008. 31(2): pp. 71-83. 5. Liu, C.S., A Fictitious Time Integration Method for Solving m-Point Boundary Value Problems. CMES-Computer Modeling in Engineering & Sciences, 2009. 39(2): pp. 125-154. 6. Arevalo, C., Campbell, S.L., and Selva, M., Unitary partitioning in general constraint preserving DAE integrators. Mathematical and Computer Modelling, 2004. 40(11-12): pp. 1273-1284. 7. Ascher, U.M., Chin, H.S., and Reich, S., Stabilization of daes and invariant-manifolds. Numerische Mathematik, 1994. 67(2): pp. 131-149. 8. Ascher, U.M. and Petzold, L.R., Projected implicit runge-kutta methods for differential-algebraic equations. Siam Journal on Numerical Analysis, 1991. 28(4): pp. 1097-1120. 9. Campbell, S.L. and Moore, E., Constraint preserving integrators for general nonlinear higher index daes. Numerische Mathematik, 1995. 69(4): pp. 383-399. 10. Chan, R.P.K., Chartier, P., and Murua, A., Post-projected Runge-Kutta methods for index-2 differential-algebraic equations. Applied Numerical Mathematics, 2002. 42(1-3): pp. 77-94. 11. Fuhrer, C. and Leimkuhler, B.J., Numerical-solution of differential-algebraic equations for constrained mechanical motion. Numerische Mathematik, 1991. 59(1): pp. 55-69. 12. Marz, R., Differential algebraic systems anew. Applied Numerical Mathematics, 2002. 42(1-3): pp. 315-335. 13. Marz, R., Numerical methods for differential algebraic equations. Acta Numerica, 1992. 1: pp. 141-198. 14. Iserles, A.M.-K., H. Z. ; Norsett ,S. P. ; Zanna,A., Lie-group methods. Acta Numerica, 2000: pp. 215-365. 15. Liu, C.S., A Lie-group shooting method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems. CMES-Computer Modeling in Engineering & Sciences, 2008. 26(3): pp. 157-168. 16. Liu, C.S., The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions. CMES-Computer Modeling in Engineering & Sciences, 2006. 13(2): pp. 149-163. 17. Liu, C.S., The Lie-group shooting method for singularly perturbed two-point boundary value problems. CMES-Computer Modeling in Engineering & Sciences, 2006. 15(3): pp. 179-196. 18. Liu, C.S., New integrating methods for time-varying linear systems and Lie-group computations. CMES-Computer Modeling in Engineering & Sciences, 2007. 20(3): pp. 157-175. 19. Munthe-Kaas, H., Runge-Kutta methods on Lie groups. Bit, 1998. 38(1): pp. 92-111. 20. Liu, C.-S., Yeih, W., and Atluri, S.N., An enhanced fictitious time integration method for non-linear algebraic equations with multiple solutions: Boundary layer, boundary value and eigenvalue problems. CMES-Computer Modeling in Engineering & Sciences, 2010. 59(3): pp. 301-323. 21. Hairer, E.L., C. ; Wanner,G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. 2002. 22. Zhang, S.D., Z., The geometric integration of nonlinear dynamical systems and applications 2005. 23. Ascher, U.M., Stabilization of invariants of discretized differential systems. Numerical Algorithms, 1997. 14(1-3): pp. 1-24. 24. Iordanescu, R., Dynamical systems and Jordan structures. Int. J. Pure Appl. Math., 2007. 35: pp. 125-143. 25. Borel, A., Linear Algebraic Groups, second edition 1991. 26. Galison, P.L., Minkowski's Space-Time: from visual thinking to the absolute world, Historical Studies in the Physical Sciences Johns Hopkins Univ.Press, 1979. 10: pp. 85-121. 27. Naber Gregory, L., The Geometry of Minkowski Spacetime. New York: Springer-Verlag, 1992. 28. Liu, C.S., Nonstandard group-preserving schemes for very stiff ordinary differential equations. CMES-Computer Modeling in Engineering & Sciences, 2005. 9(3): pp. 255-272. 29. Munthe-Kaas, H., High order Runge-Kutta methods on manifolds. Applied Numerical Mathematics, 1999. 29(1): pp. 115-127. 30. Liu, C.S., A Jordan algebra and dynamic system with associator as vector field. International Journal of Non-Linear Mechanics, 2000. 35(3): pp. 421-429. 31. Iordanescu, R., Jordan structures in analysis, geometry and physics Editura Academiei Romane, 2009. 32. Lee, H.C. and Liu, C.S., The Fourth-Order Group Preserving Methods for the Integrations of Ordinary Differential Equations. CMES-Computer Modeling in Engineering & Sciences, 2009. 41(1): pp. 1-26. 33. Chang, C.W., Liu, C.S., and Chang, J.R., A group preserving scheme for inverse heat conduction problems. CMES-Computer Modeling in Engineering & Sciences, 2005. 10(1): pp. 13-38. 34. Liu, C.S., An efficient backward group preserving scheme for the backward in time Burgers equation. CMES-Computer Modeling in Engineering & Sciences, 2006. 12(1): pp. 55-65. 35. Liu, C.S., Preserving constraints of differential equations by numerical methods based on integrating factors. CMES-Computer Modeling in Engineering & Sciences, 2006. 12(2): pp. 83-107. 36. Liu, C.S., A group preserving scheme for Burgers equation with very large Reynolds number. CMES-Computer Modeling in Engineering & Sciences, 2006. 12(3): pp. 197-211. 37. Liu, C.S., Chang, C.W., and Chang, J.R., Past cone dynamics and backward group preserving schemes for backward heat conduction problems. CMES-Computer Modeling in Engineering & Sciences, 2006. 12(1): pp. 67-81. 38. Liu, C.S., Chang, C.W., and Chang, J.R., The backward group preserving scheme for 1d backward in time advection-dispersion equation. Numerical Methods for Partial Differential Equations, 2010. 26(1): pp. 61-80. 39. Zhang, S.-Y. and Deng, Z.-C., Group preserving schemes for nonlinear dynamic system based on RKMK methods. Applied Mathematics and Computation, 2006. 175(1): pp. 497-507. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61822 | - |
| dc.description.abstract | 模擬工程問題的數學模型大多可以常微分方程式表現,以數值分析的方式求得其解的近似值已行之有年。近年學者們研究發現常微分方程式系統經過某些代數處理後,會具有一些特殊的代數以及幾何構造。若一個演算法能夠在求解微分方程式的過程中保持在李群 結構上,則此演算法能夠使數值解具有良好的準確度及穩定性。本文發展出建立在保群算法觀念上的新方法─李群 演算法,即可保持上述構造;保群算法經過多年的發展,在諸多算例中都顯示其具有優異的數值表現,然而李群 演算法目前較少數值算例驗證其性能,是故本篇論文提供六個數值算例以MATLAB程式語言建構李群 演算法,並將其與保群算法、四階龍格-庫塔法等演算法做比較,分析歸納出新方法的優點,並指出往後的研究發展方向。 | zh_TW |
| dc.description.abstract | We can model most of the engineering problems by using ordinary differential equations(ODEs), and then we often employ numerical methods to solve those equations for the approximate solutions. Studies have shown that there are some special algebraic and geometrical structures of the ODEs. If the Lie group can be preserved while solving the ODEs by some algorithm, then we will get more accurate and stable numerical solutions. This thesis constructs a brand-new algorithm─Lie group for solving non-linear ODEs based on the concept of group preserving schemes (GPS), which can preserve those structures mentioned above. The GPS have been developed for one decade,and a lot of numerical examples have shown that GPS performs well for solving ODEs, while it is deficient in the examples and evidences to show that the new method─Lie group performs well, too. Thus we apply six numerical examples, and writing the code in the programming language of MATLAB to construct Lie group algorithm. Then we compare the Lie group with the GPS, and Runge-Kutta Method of order four(RK4). Furthermore, the results of the eaxmples will be shown, and then we are going to make some conclusions, subsequently the future work of the new method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:14:34Z (GMT). No. of bitstreams: 1 ntu-102-R00521231-1.pdf: 6312618 bytes, checksum: 7e90a8ebd7c9f0051c18cab847a42438 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 尤拉法 2 1.2.2 尤拉預測-改正法 3 1.2.3 龍格-庫塔法 3 1.2.4 擬時間積分法 5 1.3 研究動機與目的 7 1.4 論文架構 7 第二章 保群算法 9 2.1 群以及李群的概念 9 2.2 增廣動態系統的構造 10 1. 幾何構造: 12 2. 代數構造: 13 3. 群的構造: 13 2.3 凱雷轉換 15 2.3.1 前尤拉法 15 2.3.2 中間尤拉法 15 2.4 指數映射 18 2.5 GPS的收斂性 20 第三章 李群SO(n) 22 3.1 李群 22 3.2 喬登動態系統 24 3.3 李群DSO(n)演算法 25 3.4 一階DSO(n)演算法,FODSO 29 3.5 二階DSO(n)演算法,SODSO 29 3.6 隱格式DSO(n)演算法 30 第四章 數值算例 34 4.1 算例一 34 4.2 算例二 43 4.3 算例三 45 4.4 算例四 52 4.5 算例五 60 4.6 算例六 63 第五章 結論與未來展望 67 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非線性動態系統 | zh_TW |
| dc.subject | 龍格-庫塔法 | zh_TW |
| dc.subject | 李群 | zh_TW |
| dc.subject | 保群算法(GPS) | zh_TW |
| dc.subject | 常微分方程式 | zh_TW |
| dc.subject | group preserving schemes (GPS) | en |
| dc.subject | Lie group | en |
| dc.subject | Runge-Kutta Method | en |
| dc.subject | non-linear dynamical system | en |
| dc.subject | ordinary differential equations | en |
| dc.title | 以李群DSO(n)法求解非線性微分方程式 | zh_TW |
| dc.title | Solving Nonlinear Ordinary Differential Equations
by the Lie-group DSO(n) Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張建仁,陳永為 | |
| dc.subject.keyword | 保群算法(GPS),李群,龍格-庫塔法,非線性動態系統,常微分方程式, | zh_TW |
| dc.subject.keyword | group preserving schemes (GPS),Lie group,Runge-Kutta Method,non-linear dynamical system,ordinary differential equations, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
