請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61820
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周綠蘋(Lu-Ping Chow) | |
dc.contributor.author | Ching-Ya Huang | en |
dc.contributor.author | 黃靖雅 | zh_TW |
dc.date.accessioned | 2021-06-16T13:14:29Z | - |
dc.date.available | 2018-09-24 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-29 | |
dc.identifier.citation | 1. Kumar V et al. Robbins & Cotran Pathologic Basis of Disease (7th ed.). Saunders. pp. 914–7.
2. 'Cancer'. World Health Organization. February 2006. Retrieved 2007-05-24. 3. Tanaka, M. et al. Hepatitis B and C Virus Infection and Hepatocellular Carcinomain China: A Review of Epidemiology and Control Measures. J Epidemiol 2011;21(6):401-416. 4. Bioulac-Sage P et al. Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience. Hepatology 50:481–489. Bruix J and Llovet JM (2003) HCC surveillance: who is the target population? Hepatology 37:507–509. 5. Villanueva A et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med 61:317–328. 6. Huo TI et al. Comparison of staging systems for HCC: one more positive answer or mission impossible? Hepatology 42:238–239. 7. El-Serag HB et al. 'Diagnosis and treatment of hepatocellular carcinoma'. Gastroenterology 134 (6): 1752–63. 8. Cillo, Umberto et al. 'Liver transplantation for the treatment of moderately or well-differentiated hepatocellular carcinoma'. Ann. Surg. 239 (2): 150–9. 9. Chen, Min-Shan et al. 'A Prospective Randomized Trial Comparing Percutaneous Local Ablative Therapy and Partial Hepatectomy for Small Hepatocellular Carcinoma'. Annals of Surgery 243 (3): 321–8 10. Johnson P et al. Sorafenib for liver cancer: the horizon broadens. Lancet Oncol 10:4–5. 11. Wilhelm S et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5:835–844. 12. Adnane L et al. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407:597–612. 13. Zhang W et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100:184–198. 14. Manning G et al. 'The protein kinase complement of the human genome'. Science 298 (5600): 1912–1934. 15. Cheng AL et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34. 16. Scanga A et al. Sorafenib: A glimmer of hope for unresectable hepatocellular carcinoma? Hepatology 49:332–334. 17. Di Maio M et al. Targeted therapies: Role of sorafenib in HCC patients with compromised liver function. Nat Rev Clin Oncol 6:505–506. 18. Llovet JM et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390. 19. Ricardo Perez-Tomas et al. Multidrug Resistance: Retrospect and Prospects in Anti-Cancer Drug Treatment. Current Medicinal Chemistry. Volume 13, Issue 18, 1859-1876. 20. Michael M. Gottesman et al. MECHANISMS OF CANCER DRUG RESISTANCE Annual Review of Medicine (Feb. 2002) Vol. 53: 615-627. 21. Fu-Shing Liu et al. Mechanisms of Chemotherapeutic Drug Resistance in Cancer Therapy—A Quick Review. Taiwanese Journal of Obstetrics and Gynecology. Volume 48, Issue 3, September 2009, 239-244. 22. Tolomeo M et al. Drug resistance and apoptosis in cancer treatment: development of new apoptosis-inducing agents active in drug resistant malignancies. Curr Med Chem Anticancer Agents. 2002 May;2(3):387-401. 23. Merino V et al. Relevance of multidrug resistance proteins on the clinical efficacy of cancer therapy. Curr Drug Deliv. 2004 Jul;1(3):203-12. 24. Chen KF et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 2011; 337: 155–61. 25. Blivet-Van Eggelpoel MJ et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol 2012; 1: 108–15. 26. Malenstein H et al. Long-term sorafenib exposure in hepatocellular cancer cell lines: resistance, risk of rebound growth and epithelial to mesenchymal transition. 2011. Poster presented at the 46th annual meeting of the European Association for the study of the liver, Berlin, Germany. 27. Huang XY et al. αB-Crystallin complexes with 14-3-3ζ to induce epithelialmesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology Published Online First: 12 Jan 2013. doi:10.1002/hep.26255. 28. Castillo J et al. Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res 2006;66:6129–38. 29. Shen YC et al. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br J Cancer 2013;108:72–81. 30. Shimizu S et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer 2012;131:548–57. 31. Liang Y et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through VHL-dependent HIF-1α inhibition in Hepatocellular Carcinoma. Hepatology Published Online First: 8 Jan 2013. doi: 10.1002/ hep.26224. 32. Marquardt JU et al. Stem cells in hepatocarcinogenesis: evidence from genomic data. Semin Liver Dis 2010;30:26–34. 33. Xin HW et al. Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut Published Online First: 14 Feb 2013. doi:10.1136/gutjnl-2012-303261. 34. Song G et al. 'The activation of Akt/PKB signaling pathway and cell survival'. J. Cell. Mol. Med. 9 (1): 59–71. 35. Alberts B et al. 'Figure 15-60: BAD phosphorylation by Akt'. Molecular biology of the cell. New York: Garland Science. ISBN 0-8153-3218-1. 36. Lodish H et al. 'Figure 23-50: BAD interaction with Bcl-2'. Molecular cell biology. New York: Scientific American Books. ISBN 0-7167-3136-3. 37. Faissner A et al. 'DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues'. Adv. Exp. Med. Biol. 557: 25–53. 38. 'Tumor Genetics; AKT Function and Oncogenic Activity'. Scientific Report. Fox Chase Cancer Center. 2005. 39. Vivanco. et al. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer, 2 (2002), pp. 489–501. 40. Bellacosa. et al. Testa. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res, 94 (2005), pp. 29–86. 41. B.D. Manning. et al. AKT/PKB signaling: navigating downstream. Cell, 129 (2007), pp. 1261–1274. 42. J.A. Engelman. et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 7 (2006), pp. 606–619. 43. B.T. Hennessy et al. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov, 4 (2005), pp. 988–1004. 44. Hay N et al. 'Upstream and downstream of mTOR'. Genes Dev 18 (16): 1926–45. 45. Beevers C et al. 'Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells'. Int J Cancer 119 (4): 757–64. 46. Kim D et al. 'mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery'. Cell 110 (2): 163–75. 47. Kim D et al. 'GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR'. Mol Cell 11 (4): 895–904. 48. Fang Y et al. 'Phosphatidic acid-mediated mitogenic activation of mTOR signaling'. Science 294 (5548): 1942–5. 49. Sarbassov D et al. 'Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton'. Curr Biol 14 (14): 1296–302. 50. Sarbassov D et al. 'Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex'. Science 307 (5712): 1098–101. 51. Populo, H et al. 'The mTOR Signalling Pathway in Human Cancer'. International Journal of Molecular Sciences 13 (2): 1886–1918. 52. Meric-Bernstam et al. 'Targeting the mTOR Signaling Network for Cancer Therapy'. Journal of Clinical Oncology 27 (13): 2278–2287. 53. Huang, S et al. 'Targeting mTOR signaling for cancer therapy'. Current Opinion in Pharmacology 3 (4): 371–377. 54. Tsang, Chi Kwan et al. 'Targeting mammalian target of rapamycin (mTOR) for health and diseases'. Drug Discovery Today 12 (3-4): 112–124. 55. Zaytseva, Yekaterina Y et al. 'mTOR inhibitors in cancer therapy'. Cancer Letters 319 (1): 1–7. 56. James C. Yao et al. Everolimus in Advanced Pancreatic Neuroendocrine Tumors: The Clinical Experience. Cancer Res 2013;73:1449-1453. 57. Vignot, S. 'mTOR-targeted therapy of cancer with rapamycin derivatives'. Annals of Oncology 16 (4): 525–537. 58. 'FDA approval for Everolimus'. National Cancer Institute. Retrieved 20 September 2012. 59. Ballou, Lisa M. et al. 'Rapamycin and mTOR kinase inhibitors'. Journal of Chemical Biology 1 (1-4): 27–36. 60. Sutherlin, Daniel P. et al. 'Discovery of a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor (GDC-0980) for the Treatment of Cancer'. Journal of Medicinal Chemistry 54 (21): 7579–7587. 61. Zaytseva, Yekaterina Y et al. 'mTOR inhibitors in cancer therapy'. Cancer Letters 319 (1): 1–7. 62. Jean Pascal Piret et al. CoCl2, a chemical inducer of hypoxia inducible factor 1-alpha, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Annals New York Academy of Science 973: 443-447 (2002). 63. Ida Karin Nordgren et al. Targeting tumour angiogenesis with small molecule inhibitors of hypoxia inducible factor. Chem. Soc. Rev., 2011,40, 4307-4317. 64. Christiane Brahimi-Horn et al. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. ELECTRONIC JOURNAL OF ONCOLOGY Bull Cancer 2006 ; 93 (8) : E73-80. 65. Yair Benita et al. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1) target genes that form the core response to hypoxia. Nucleic Acids Res. 2009 Aug;37(14):4587-602. 66. Amaya Ortiz-Barahona et al. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Res. 2010 April; 38(7): 2332–2345. 67. Xiang-Hong Peng et al. Cross-talk between Epidermal Growth Factor Receptor and Hypoxia-inducible Factor-1α Signal Pathways Increases Resistance to Apoptosis by Up-regulating Survivin Gene Expression. J. Biol. Chem. 2006, 281:25903-25914. 68. Xu-Yun Zhao et al. Synergistic Induction of Galectin-1 by CCAAT/Enhancer Binding Protein α and Hypoxia-inducible Factor 1α and Its Role in Differentiation of Acute Myeloid Leukemic Cells. J. Biol. Chem. 2011, 286:36808-36819. 69. Gu, S et al. Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Mol. Cell Proteomics. 2004, 3, 998-1008. 70. Bae, W. et al. Proteomic Study for the Cellular Responses to Cd2+ in Schizosaccharomyces pombe Through Amino Acid-coded Mass Tagging and Liquid Chromatography Tandem Mass Spectrometry. Mol. Cell Proteomics. 2004, 3, 596-607. 71. Blagoev, B. et al. Temporal Analysis of Phosphotyrosine-dependent Signaling Networks by Quantitative Proteomics. Nat. Biotechnol. 2004, 22, 1139-1145. 72. Blagoev, B. et al. A Proteomics Strategy to Elucidate Functional Protein-protein Interactions Applied to EGF Signaling. Nat. Biotechnol. 2003, 21, 315-318. 73. Schulze, W. et al. A Novel Proteomic Screen for Peptide-protein Interactions. J. Biol. Chem. 2004, 279, 10756-10764. 74. Selbach, M. et al. Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat.Methods 2006, 3, 981-983. 75. Engelman,J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043 (2007). 76. Chakravarti, A. et al. Insulin-link growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 62, 200-207 (2002). 77. Guix, M. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J. Clin. Invest. 118, 2609-2619 (2008). 78. Jennifer S et al. Mechanisms of mTOR inhibitor resistance in cancer therapy. Targeted Oncology. March 2011, Volume 6, Issue 1, 17-27. 79. Anja Muller et al. Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma. Int. J. Cancer: 00, 00–00 (2013). 80. Juan Cui et al. Hypoxia and miscoupling between reduced energy efficiency and signaling to cell proliferation drive cancer to grow increasingly faster. Journal of Molecular Cell Biology (2012), 4, 174–176. 81. Gao N et al. Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol Cell Biochem. 2004 Jan;255(1-2):33-45. 82. Wei-Chien Yuan. et al. A Cullin3-KLHL20 Ubiquitin Ligase-Dependent Pathway Targets PML to Potentiate HIF-1 Signaling and Prostate Cancer Progression. Cancer Cell 20, 214–228, August 16, 2011. 83. Kim JW et al. HIF-1- mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3:177-185. 84. Papandreou I et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006;3:187-197. 85. Fukuda R et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007;129:111-122. 86. Zhang H et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL- deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 2007;11:407-420. 87. Park et al. (2004) Hypoxia-inducible factor 1-related diseases and prospective therapeutic tools. J Pharmacol Sci 94, 221-232. 88. Johnson P et al. Sorafenib for liver cancer: the horizon broadens. Lancet Oncol 10:4–5. 89. Fransvea E et al. HCC heterogeneity: molecular pathogenesis and clinical implications. Cell Oncol 31:227–233. 90. Yee Koh M et al. 'HIF-1 regulation: not so easy come, easy go'. Trends Biochem. Sci. 33 (11): 526–34. 91. Ratcliffe PJ et al. 'From erythropoietin to oxygen: hypoxia-inducible factor hydroxylases and the hypoxia signal pathway.'. Blood Purif. 20 (5): 445–50. 92. Liang Y et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology. 2013 May;57(5):1847-57. 93. Welsh S et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther. 2004 Mar;3(3):233-44. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61820 | - |
dc.description.abstract | 肝細胞癌為最常見的肝癌種類之一,在原發性肝癌中佔了九成比例。肝癌的成因與肝炎病毒的感染與肝硬化最有關係。其中B型肝炎病毒是肝癌形成之最重要元兇;在另一方面酗酒引發的肝硬化,也會使肝癌的機會提高。末期的肝細胞癌更成為具有高侵襲性的癌症,病人的預後較差,且對於一般臨床肝癌用藥也無感受性,近年來在臨床上唯一核可用於治療晚期肝細胞癌的標靶藥物為sorafenib,是一種多重激酶的抑制物(multi-kinase inhibitor),可延長末期病人數月的壽命,但是僅10%的病患對藥物有感受性。
本研究中,我們利用原始肝細胞癌細胞Huh7建立了一株經sorafenib長期篩選培養後,對sorafenib產生抗藥性的細胞(acquired-sorafenib resistance--Huh7R),並在測試藥物導致的細胞凋亡實驗中,與原先細胞相比達到顯著性差異,我們進一步利用質譜定量技術「細胞培養中標記穩定同位素胺基酸」(Stable Isotope Labeling of Amino acids in Culture-SILAC),將含同位素的氨基酸標記在細胞蛋白質上,並透過後續的磷酸化胜肽鏈純化技術,結合質譜儀(mass spectrometry)來對Huh7和Huh7R細胞進行磷酸化蛋白的相對定量分析,透過線上軟體STRING分析後,指向於Huh7R細胞中高表現的蛋白多數參與在與AKT訊息傳遞路徑與下游mTOR系統中,並且於後續西方墨點法驗證了質譜分析結果,顯示出也許AKT訊息傳遞路徑以及其下游的mTOR系統在Huh7R細胞的抗藥性中扮演了重要的角色。 基於以上結果,為了克服Huh7R細胞的抗藥性,我們進一步利用mTOR抑制劑rapamycin結合sorafenib治療,有效抑制了抗藥性細胞的生長情形,mTOR下游的磷酸化蛋白質表現量也降低了,同時我們也去探討受mTOR調控的下游基因之蛋白產物表現,經由文獻探討找尋到若干標的蛋白,並於Huh7R 細胞中的高表現量得到驗證,其中一種下游蛋白為低氧誘導因子 (Hif1-α),為低氧下才會誘發表現的轉錄因子,藉由仿製低氧的實驗中,我們看到了Huh7R細胞Hif1-α的顯著活化,同時也發現Hif1-α下游調控的基因蛋白產物VEGF, survivin, PFKP和Hexokinase II等,於低氧時在的Huh7R細胞中表現量的升高,而這些蛋白的功能使得Huh7R細胞於低氧下具備血管新生與醣解代謝產生能量的能力,說明了mTOR的活化將一連串導致下游各種基因表現使Huh7R細胞產生抗藥機制。 | zh_TW |
dc.description.abstract | Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. Most cases of HCC are secondary to either a viral hepatitis (hepatitis B or C virus infection), alcoholism, or other causes resulting in liver cirrhosis. Advanced HCC is a highly aggressive tumor with a very poor prognosis. Currently, the only approved systemic therapy for advanced HCC is sorafenib, a multi-kinase inhibitor, which has showed to increase the survival in patients with advanced HCC. Sorafenib induced disease control in 34%~43% of advanced HCC patients. However, none of them have durable diseae control and would eventually develop drug resistance to sorafenib.
In this study, we established sorafenib-resistant cell (Huh7R) from Huh7 cell (HCC cell line) by long-term exposure to sorafenib at low doses escalating to higher doses for a long period of time, and found out that Huh7R cells had significant resistance to sorafenib-induced apoptosis at the clinical relevant concentrations (up to 10 μM). We used quantitative phosphoproteomics approach, Stable Isotope Labeling of Amino acids in Cell Culture (SILAC), to in vivo incorporate labeled amino acid into proteins, phosphopeptide enrichment, and mass spectrometry (MS)-based identification/quantitation. We analyzed the phosphoproteome difference between Huh7 and Huh7R cells. By using STRING analysis, we built up the protein networks based on the phosphoproteins with significant changes and revealed that in AKT pathway and downstream mTOR pathway were heavily involved. We next confirmed that the activation of AKT and mTOR pathways maybe the major contributor mediating the resistance to sorafenib in cultured HCC cells. We went on testing whether the combination of rapamycin, a mTOR inhibitor, with sorafenib can overcome the acquired resistance to sorafenib in Huh7R cells. In doing so, viability of Huh7R cells and activities of mTOR pathway were both reduced by rapamycin. We next investigate the significant of downstream molecules regulated by mTOR, such protein is Hif1-α, which is a transcription factor and only activated under hypoxia condition. In a CoCl2-mimicing experiment, Huh7R cells showed higher expression level of Hif1-α than Huh7 cells. Further, some of the Hif1-α-regulating proteins, are also up-regulated in Huh7R cells, many of which are involved in angiogenesis and metabolic pathway. Our data suggested that mTOR and downstream Hif1-α activation contribute resistance to sorafenib in Huh7R cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:14:29Z (GMT). No. of bitstreams: 1 ntu-102-R00442010-1.pdf: 3596474 bytes, checksum: 40be1c034a23c9a8051ee12e3dc732cb (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書------------------------------------------------------i
摘要------------------------------------------------------------------------ii Abstract------------------------------------------------------------------iv 縮寫-----------------------------------------------------------------------vi 第一章 導論-------------------------------------------------------------1 第一節 肝細胞癌Hepatocellular carcinoma(HCC)---------------------------------1 1.1 肝細胞癌之流行病學-------------------------------------------------------------------1 1.2 肝細胞癌的診斷、治療及預後-------------------------------------------------------1 第二節 抗癌藥物導致之後天抗藥性 (Acquired drug resistance)--------------------4 2.1 藥物治療的後天抗藥性機制----------------------------------------------------------4 2.2 Sorafenib (Nexavar,蕾莎瓦)的研究與後天抗藥性------------------------------5 第三節 AKT訊息傳遞路徑與mTOR系統的功能與重要性--------------------------7 3.1 AKT訊息傳遞路徑於細胞中扮演的角色------------------------------------------7 3.2 mTOR系統的主要功能----------------------------------------------------------------8 3.3 mTOR藥物的使用----------------------------------------------------------------------9 第四節 研究動機-------------------------------------------------------------------------------11 第二章 實驗材料------------------------------------------------------12 第一節 肝細胞癌細胞株----------------------------------------------------------------------12 第二節 儀器及裝置----------------------------------------------------------------------------12 第三節 酵素-------------------------------------------------------------------------------------13 第四節 抗體-------------------------------------------------------------------------------------13 第五節 試劑組與藥品-------------------------------------------------------------------------15 第六節 軟體與資料庫-------------------------------------------------------------------------16 第三章 實驗方法------------------------------------------------------17 第一節 肝細胞癌細胞株的培養-------------------------------------------------------------17 1.1 培養基(medium)的配置-----------------------------------------------------------17 1.2 細胞的培養------------------------------------------------------------------------------17 1.3 細胞的計數------------------------------------------------------------------------------17 第二節 蛋白質分析法-------------------------------------------------------------------------18 2.1 蛋白質濃度測定(660nm Protein Assay)----------------------------------------18 2.2 十二烷基磺酸鈉-聚丙烯鎦胺膠體電泳分析(SDS-PAGE)------------------18 2.3 西方墨點法(Western blotting)----------------------------------------------------19 第三節 細胞培養中標記穩定同位素胺基酸」(Stable Isotope Labeling of Amino acids in Culture-SILAC)-------------------------------------------------------20 第四節 溶液內酵素切割 (In-solution digestion)----------------------------------------22 第五節 TiO2親和性管柱純化磷酸化胜肽------------------------------------------------22 第六節 SILAC分析結果的差異蛋白質鑑定---------------------------------------------22 第七節 細胞生存能力試驗(MTT Assay)----------------------------------------------23 7.1 MTT reagent 配置----------------------------------------------------------------------23 7.2 細胞準備---------------------------------------------------------------------------------23 7.3 藥物配置---------------------------------------------------------------------------------24 7.4 MTT活性偵測--------------------------------------------------------------------------24 第八節 氯化亞鈷仿製低氧環境 (CoCl2-mimicing hypoxia)--------------------------24 第九節 細胞生長曲線測定 (Cell growth curve assay)---------------------------------24 第四章 結果------------------------------------------------------------26 第一節 Huh7細胞和抗藥性Huh7R細胞的特性與比較------------------------------26 第二節 Huh7和Huh7R細胞的生長訊息傳遞路徑分析------------------------------26 第三節 磷酸化蛋白質圖譜之差異分析----------------------------------------------------27 第四節 細胞培養中標記穩定同位素胺基酸」(Stable Isotope Labeling of Amino acids in Culture-SILAC)與結果分析----------------------------------------28 4.1 Huh7細胞和Huh7R細胞中差異蛋白的功能分析------------------------------28 4.2 AKT訊息傳遞路徑與mTOR系統的重要性-------------------------------------28 第五節 利用西方墨點法進行SILAC鑑定結果之確認--------------------------------29 5.1 抗藥性細胞Huh7R中AKT訊息傳遞路徑的活化------------------------------29 5.2 抗藥性細胞Huh7R中mTOR系統的活化----------------------------------------29 第六節 低氧環境 (Hypoxia) 誘發Huh7R細胞中低氧誘導因子 (Hif1-α) 與下游蛋白的表現----------------------------------------------------------------------------30 6.1 低氧誘導因子 (Hif1-α)於Huh7R細胞中呈高度表現---------------------------30 6.2 低氧環境 (Hypoxia) 誘發Huh7R細胞低氧誘導因子 (Hif1-α) 下游蛋白表 現--------------------------------------------------------------------------------------------30 第七節 Sorafenib結合Rapamycin抑制抗藥性細胞Huh7R的生長--------------32 7.1 Rapamycin抑制Huh7R生長---------------------------------------------------------32 7.2 Rapamycin結合Sorafenib有效抑制Huh7R細胞生長--------------------------32 第八節 Rapamycin抑制Huh7R細胞低氧誘導因子 (Hif1-α) 表現---------------33 第九節 PX-478抑制Huh7R細胞Hif1-α的表現以及細胞生長---------------------33 第十節 結論-------------------------------------------------------------------------------------34 第五章 討論------------------------------------------------------------36 第一節 實驗方法學討論----------------------------------------------------------------------36 第二節 AKT訊息傳遞路徑和mTOR系統的重要性及抗藥性的研究------------37 第三節 低氧誘導因子Hif1-α於癌症中扮演的角色------------------------------------39 第四節 其他肝癌細胞株的試驗-------------------------------------------------------------41 4.1 其他肝癌細胞株的sorafenib感受性測試-----------------------------------------41 4.2 以Huh7R細胞中高表現的磷酸化蛋白進行驗證--------------------------------41 第五節 結語與未來展望----------------------------------------------------------------------42 第六章 參考文獻------------------------------------------------------43 圖表----------------------------------------------------------------------49 附錄----------------------------------------------------------------------68 | |
dc.language.iso | zh-TW | |
dc.title | 以質譜定量技術分析磷酸化蛋白體研究Sorafenib後天抗藥性機制 | zh_TW |
dc.title | Quantitative Phosphoproteomics to Investigate Sorafenib-Acquired Resistance in Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐志宏(Chih-Hung Hsu),顧記華(Jih-Hwa Guh) | |
dc.subject.keyword | 肝細胞癌,sorafenib抗藥性,mTOR系統,rapamycin,低氧誘導因子 (Hif1-α), | zh_TW |
dc.subject.keyword | Hepatocellular carcinoma,sorafenib-resistant,mTOR pathway,rapamycin,hypoxia-inducing factor 1-α (Hif1-α), | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。