請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61808完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃偉邦(Wei-Pang Huang) | |
| dc.contributor.author | Li-Eng Daniel Yu | en |
| dc.contributor.author | 于立恩 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:14:00Z | - |
| dc.date.available | 2023-07-30 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-30 | |
| dc.identifier.citation | Ano, Y., Hattori, T., Oku, M., Mukaiyama, H., Baba, M., Ohsumi, Y., Kato, N., and Sakai, Y. (2005). A Sorting Nexin PpAtg24 Regulates Vacuolar Membrane Dynamics during Pexophagy via Binding to Phosphatidylinositol-3-Phosphate. Molecular Biology of the Cell 16, 446-457.
Antonny, B. (2011). Mechanisms of Membrane Curvature Sensing. Annual Review of Biochemistry 80, 101-123. Antonny, B., Beraud-Dufour, S., Chardin, P., and Chabre, M. (1997). N-Terminal Hydrophobic Residues of the G-Protein ADP-Ribosylation Factor-1 Insert into Membrane Phospholipids upon GDP to GTP Exchange†. Biochemistry 36, 4675-4684. Backer, Jonathan M. (2008). The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochemical Journal 410, 1. Bhatia, V.K., Madsen, K.L., Bolinger, P.-Y., Kunding, A., Hedegard, P., Gether, U., and Stamou, D. (2009). Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J 28, 3303-3314. Carlton, J., Bujny, M., Peter, B.J., Oorschot, V.M.J., Rutherford, A., Mellor, H., Klumperman, J., McMahon, H.T., and Cullen, P.J. (2004). Sorting Nexin-1 Mediates Tubular Endosome-to-TGN Transport through Coincidence Sensing of High- Curvature Membranes and 3-Phosphoinositides. Current Biology 14, 1791-1800. Cebollero, E., and Reggiori, F. (2009). Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1793, 1413-1421. Chang, C.-Y., and Huang, W.-P. (2007). Atg19 Mediates a Dual Interaction Cargo Sorting Mechanism in Selective Autophagy. Molecular Biology of the Cell 18, 919-929. Cheong, H., Yorimitsu, T., Reggiori, F., Legakis, J.E., Wang, C.-W., and Klionsky, D.J. (2005). Atg17 Regulates the Magnitude of the Autophagic Response. Molecular Biology of the Cell 16, 3438-3453. Danial, N.N., and Korsmeyer, S.J. (2004). Cell Death: Critical Control Points. Cell 116, 205-219. Darsow, T., Rieder, S.E., and Emr, S.D. (1997). A Multispecificity Syntaxin Homologue, Vam3p, Essential for Autophagic and Biosynthetic Protein Transport to the Vacuole. The Journal of Cell Biology 138, 517-529. Ellson, C.D., Andrews, S., Stephens, L.R., and Hawkins, P.T. (2002). The PX domain: a new phosphoinositide-binding module. Journal of Cell Science 115, 1099-1105. Farsad, K. (2001). Generation of high curvature membranes mediated by direct endophilin bilayer interactions. The Journal of Cell Biology 155, 193-200. Ford, M.G.J., Mills, I.G., Peter, B.J., Vallis, Y., Praefcke, G.J.K., Evans, P.R., and McMahon, H.T. (2002). Curvature of clathrin-coated pits driven by epsin. Nature 419, 361-366. Frost, A., Unger, V.M., and De Camilli, P. (2009). The BAR Domain Superfamily: Membrane-Molding Macromolecules. Cell 137, 191-196. Gallop, J.L., Jao, C.C., Kent, H.M., Butler, P.J.G., Evans, P.R., Langen, R., and McMahon, H.T. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25, 2898-2910. Geng, J., and Klionsky, D.J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series. EMBO reports 9, 859-864. Haas, A.L., Warms, J.V., Hershko, A., and Rose, I.A. (1982). Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. Journal of Biological Chemistry 257, 2543-2548. Habermann, B. (2004). The BAR-domain family of proteins: a case of bending and binding? EMBO reports 5, 250-255. Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation. Cell 141, 656-667. Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393. Hatzakis, N.S., Bhatia, V.K., Larsen, J., Madsen, K.L., Bolinger, P.-Y., Kunding, A.H., Castillo, J., Gether, U., Hedegard, P., and Stamou, D. (2009). How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat Chem Biol 5, 835-841. Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A. (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biology 11, 1433-1437. Hershko, A., and Ciechanover, A. (1998). THE UBIQUITIN SYSTEM. Annual Review of Biochemistry 67, 425-479. Hettema, E.H., Lewis, M.J., Black, M.W., and Pelham, H.R.B. (2003). Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J 22, 548-557. Hristova, K., Wimley, W.C., Mishra, V.K., Anantharamiah, G.M., Segrest, J.P., and White, S.H. (1999). An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method. Journal of Molecular Biology 290, 99-117. Hutchins, M.U., Veenhuis, M., and Klionsky, D.J. (1999). Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. Journal of Cell Science 112, 4079-4087. James, P., Halladay, J., and Craig, E.A. (1996). Genomic Libraries and a Host Strain Designed for Highly Efficient Two-Hybrid Selection in Yeast. Genetics 144, 1425-1436. Jao, C.C., Der-Sarkissian, A., Chen, J., and Langen, R. (2004). Structure of membrane-bound α-synuclein studied by site-directed spin labeling. Proceedings of the National Academy of Sciences of the United States of America 101, 8331-8336. Jao, C.C., Hegde, B.G., Chen, J., Haworth, I.S., and Langen, R. (2008). Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement. Proceedings of the National Academy of Sciences 105, 19666-19671. Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M., and Ohsumi, Y. (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16, 2544-2553. Kabeya, Y., Kawamata, T., Suzuki, K., and Ohsumi, Y. (2007). Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 356, 405-410. Kabeya, Y., Noda, N.N., Fujioka, Y., Suzuki, K., Inagaki, F., and Ohsumi, Y. (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 389, 612-615. Kakuta, S., Yamamoto, H., Negishi, L., Kondo-Kakuta, C., Hayashi, N., and Ohsumi, Y. (2012). Atg9 Vesicles Recruit Vesicle-tethering Proteins Trs85 and Ypt1 to the Autophagosome Formation Site. Journal of Biological Chemistry 287, 44261-44269. Kawamata, T., Kamada, Y., Suzuki, K., Kuboshima, N., Akimatsu, H., Ota, S., Ohsumi, M., and Ohsumi, Y. (2005). Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 338, 1884-1889. Khalfan, W.A., and Klionsky, D.J. (2002). Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Current Opinion in Cell Biology 14, 468-475. Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001). Two Distinct Vps34 Phosphatidylinositol 3–Kinase Complexes Function in Autophagy and Carboxypeptidase Y Sorting inSaccharomyces cerevisiae. The Journal of Cell Biology 152, 519-530. Kim, J., Scott, S.V., Oda, M.N., and Klionsky, D.J. (1997). Transport of a Large Oligomeric Protein by the Cytoplasm to Vacuole Protein Targeting Pathway. The Journal of Cell Biology 137, 609-618. Klionsky, D.J. (2005). Autophagy. Current Biology 15, R282-R283. Klionsky, D.J. (2010). The Autophagy Connection. Developmental Cell 19, 11-12. Klionsky, D.J., Codogno, P., Cuervo, A.M., Deretic, V., Elazar, Z., Fueyo, J., Gewirtz, D.A., Kroemer, G., Levine, B., Mizushima, N., et al. (2010). A comprehensive glossary of autophagy-related molecules and processes. Landes Bioscience Review Autophagy 6, 438-448. Klionsky, D.J., Cuervo, A.M., and Seglen, P.O. (2007). Methods for Monitoring Autophagy from Yeast to Human. Autophagy 3, 181-206. Kroemer, G., and Levine, B. (2008). Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9, 1004-1010. Lee, M.C.S., Orci, L., Hamamoto, S., Futai, E., Ravazzola, M., and Schekman, R. (2005). Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle. Cell 122, 605-617. Lemmon, M.A. (2008). Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9, 99-111. Leprince, C., Le Scolan, E., Meunier, B., Fraisier, V., Brandon, N., De Gunzburg, J., and Camonis, J. (2003). Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. Journal of Cell Science 116, 1937-1948. Lu, L., Horstmann, H., Ng, C., and Hong, W. (2001). Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). Journal of Cell Science 114, 4543-4555. Lynch-Day, M.A., and Klionsky, D.J. (2010). The Cvt pathway as a model for selective autophagy. FEBS Letters 584, 1359-1366. Madsen, K.L., Bhatia, V.K., Gether, U., and Stamou, D. (2010). BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Letters 584, 1848-1855. Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741-752. Mari, M., Griffith, J., Rieter, E., Krishnappa, L., Klionsky, D.J., and Reggiori, F. (2010). An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. The Journal of Cell Biology 190, 1005-1022. Massey, A., Kiffin, R., and Cuervo, A.M. (2004). Pathophysiology of chaperone-mediated autophagy. The International Journal of Biochemistry & Cell Biology 36, 2420-2434. McMahon, H.T., and Gallop, J.L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590-596. Mizushima, N. (2010a). Autophagy. Annual Review of Cell and Developmental Biology 27, 110301095425039. Mizushima, N. (2010b). The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology 22, 132-139. Nair, U. (2005). Molecular Mechanisms and Regulation of Specific and Nonspecific Autophagy Pathways in Yeast. Journal of Biological Chemistry 280, 41785-41788. Nice, D.C. (2002). Cooperative Binding of the Cytoplasm to Vacuole Targeting Pathway Proteins, Cvt13 and Cvt20, to Phosphatidylinositol 3-Phosphate at the Pre-autophagosomal Structure Is Required for Selective Autophagy. Journal of Biological Chemistry 277, 30198-30207. Noda, N.N., Ohsumi, Y., and Inagaki, F. (2010). Atg8-family interacting motif crucial for selective autophagy. FEBS Letters 584, 1379-1385. Noda, T., Kim, J., Huang, W.-P., Baba, M., Tokunaga, C., Ohsumi, Y., and Klionsky, D.J. (2000). Apg9p/Cvt7p Is an Integral Membrane Protein Required for Transport Vesicle Formation in the Cvt and Autophagy Pathways. The Journal of Cell Biology 148, 465-480. Obara, K., Sekito, T., and Ohsumi, Y. (2006). Assortment of Phosphatidylinositol 3-Kinase Complexes—Atg14p Directs Association of Complex I to the Pre-autophagosomal Structure in Saccharomyces cerevisiae. Molecular Biology of the Cell 17, 1527-1539. Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216. Orsi, A., Razi, M., Dooley, H.C., Robinson, D., Weston, A.E., Collinson, L.M., and Tooze, S.A. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Molecular Biology of the Cell 23, 1860-1873. Peitzsch, R.M., and McLaughlin, S. (1993). Binding of acylated peptides and fatty acids to phospholipid vesicles: Pertinence to myristoylated proteins. Biochemistry 32, 10436-10443. Peter, B.J. (2004). BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure. Science 303, 495-499. Ragusa, M.J., Stanley, R.E., and Hurley, J.H. (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151, 1501-1512. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology 12, 747-757. Reggiori, F., and Tooze, S.A. (2012). Autophagy regulation through Atg9 traffic. The Journal of Cell Biology 198, 151-153. Reggiori, F., Tucker, K.A., Stromhaug, P.E., and Klionsky, D.J. (2004). The Atg1-Atg13 Complex Regulates Atg9 and Atg23 Retrieval Transport from the Pre-Autophagosomal Structure. Developmental cell 6, 79-90. Saftig, P., and Klumperman, J. (2009). Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10, 623-635. Sakai, Y., Oku, M., van der Klei, I.J., and Kiel, J.A.K.W. (2006). Pexophagy: Autophagic degradation of peroxisomes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763, 1767-1775. Sato, T.K., Darsow, T., and Emr, S.D. (1998). Vam7p, a SNAP-25-Like Molecule, and Vam3p, a Syntaxin Homolog, Function Together in Yeast Vacuolar Protein Trafficking. Molecular and Cellular Biology 18, 5308-5319. Schu, P., Takegawa, K., Fry, M., Stack, J., Waterfield, M., and Emr, S. (1993). Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88-91. Shintani, T., Huang, W.-P., Stromhaug, P.E., and Klionsky, D.J. (2002). Mechanism of Cargo Selection in the Cytoplasm to Vacuole Targeting Pathway. Developmental cell 3, 825-837. Shintani, T., and Klionsky, D.J. (2004). Autophagy in Health and Disease: A Double-Edged Sword. Science 306, 990-995. Srivastava, A., and Jones, E.W. (1998). Pth1/Vam3p Is the Syntaxin Homolog at the Vacuolar Membrane of Saccharomyces cerevisae Required for the Delivery of Vacuolar Hydrolases. Genetics 148, 85-98. Stevens, T., Esmon, B., and Schekman, R. (1982). Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30, 439-448. Strasser, A., O'Connor, L., and Dixit, V.M. (2000). APOPTOSIS SIGNALING. Annual Review of Biochemistry 69, 217-245. Suetsugu, S., Toyooka, K., and Senju, Y. (2010). Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Seminars in Cell & Developmental Biology 21, 340-349. Suzuki, K., Kubota, Y., Sekito, T., and Ohsumi, Y. (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes to Cells 12, 209-218. Suzuki, K., and Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581, 2156-2161. Takei, K., Slepnev, V.I., Haucke, V., and De Camilli, P. (1999a). Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1, 33-39. Takei, K., Slepnev, V.I., Haucke, V., and De Camilli, P. (1999b). Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1. Tanaka, K., Waxman, L., and Goldberg, A.L. (1983). ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. The Journal of Cell Biology 96, 1580-1585. Tarricone, C., Xiao, B., Justin, N., Walker, P.A., Rittinger, K., Gamblin, S.J., and Smerdon, S.J. (2001). The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411, 215-219. Tooze, S.A., and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nature Cell Biology 12, 831-835. Traer, C.J., Rutherford, A.C., Palmer, K.J., Wassmer, T., Oakley, J., Attar, N., Carlton, J.G., Kremerskothen, J., Stephens, D.J., and Cullen, P.J. (2007). SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol 9, 1370-1380. Valls, L.A., Hunter, C.P., Rothman, J.H., and Stevens, T.H. (1987). Protein sorting in yeast: The localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48, 887-897. Wang, C.-W., Kim, J., Huang, W.-P., Abeliovich, H., Stromhaug, P.E., Dunn, W.A., and Klionsky, D.J. (2001). Apg2 Is a Novel Protein Required for the Cytoplasm to Vacuole Targeting, Autophagy, and Pexophagy Pathways. Journal of Biological Chemistry 276, 30442-30451. Wigge, P., and McMahon, H.T. (1998). The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends in Neurosciences 21, 339-344. Wrighton, K.H. (2011). Autophagy: ESCRTing proteins for microautophagy. Nat Rev Mol Cell Biol 12, 136-137. Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109. Yamamoto, H., Kakuta, S., Watanabe, T.M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M., and Ohsumi, Y. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. The Journal of Cell Biology 198, 219-233. Yang, Z., and Klionsky, D.J. (2009). An Overview of the Molecular Mechanism of Autophagy. 335, 1-32. Yen, W.L., Shintani, T., Nair, U., Cao, Y., Richardson, B.C., Li, Z., Hughson, F.M., Baba, M., and Klionsky, D.J. (2010). The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. The Journal of Cell Biology 188, 101-114. Yeung, T., Terebiznik, M., Yu, L., Silvius, J., Abidi, W.M., Philips, M., Levine, T., Kapus, A., and Grinstein, S. (2006). Receptor Activation Alters Inner Surface Potential During Phagocytosis. Science 313, 347-351. Yorimitsu, T. (2005). Atg11 Links Cargo to the Vesicle-forming Machinery in the Cytoplasm to Vacuole Targeting Pathway. Molecular Biology of the Cell 16, 1593-1605. Yorimitsu, T., and Klionsky, D.J. (2005). Atg11 Links Cargo to the Vesicle-forming Machinery in the Cytoplasm to Vacuole Targeting Pathway. Molecular Biology of the Cell 16, 1593-1605. Youle, R.J., and Narendra, D.P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology 12, 9-14. Young, A.R.J. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. Journal of Cell Science 119, 3888-3900. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61808 | - |
| dc.description.abstract | 細胞自噬(Autophagy)屬於一種分解機制,在真核生物中具有高度的演化保守性。它與許多細胞生理反應有關,且受到細胞自噬相關蛋白(Atg)的精密調控。在細胞自噬進行的過程中,具有雙層膜構造的自噬小體(Autophagosome)會將細胞質中的目標物包裹起來,並且與液胞(Vacuole)融合,最後被水解酶所分解。細胞自噬除了可以非選擇性地包裹目標物外,也可以專一性地包裹多餘的胞器進行降解作用。在出芽酵母菌中(Saccharomyces cerevisiae),養分的缺乏會誘發非選擇性細胞自噬的進行;然而酵母菌特有的選擇性細胞自噬:細胞質至液胞傳遞(Cytoplasm-to-vacuole targeting, Cvt)途徑,即使是在養分充足的環境下,仍可以持續地進行。雖然此兩種細胞自噬具有相似的調控機制,但在調控過程中仍然有特殊的蛋白只專一性地參與在其中一種細胞自噬之中。Atg24是一種可以和磷脂醯肌醇3-磷酸(PI3P)結合的蛋白,它僅調控選擇性細胞自噬,而不參與在非選擇性細胞自噬。Atg24除了具有可和PI3P結合的模組(domain)之外,也同時兼具兩個螺旋(coiled-coil)模組和雙性螺旋(Amphipathic helix)複合的BAR模組。其中BAR模組具有可以感受生物膜曲度的功能,因此可以藉由幫助磷脂質在膜間的傳遞以及囊泡之間的融合來調控膜系統之間的運作。在本篇研究中,主要在探討Atg24的功能與結構對於細胞自噬的調控機制。首先,我們發現Atg24透過其羰基端與Atg20進行交互作用。其次,Atg24的BAR模組除了為細胞質至液胞傳遞途徑所必需之外,也影響內膜系統的傳遞和液胞蛋白的運送。除此之外,我們也證實Atg24的BAR模組對於其本身與膜之間的結合很重要。總結來說,Atg24參與在PI3P訊息傳遞之後的調控步驟,並且透過BAR模組的特性來調控細胞自噬的進行。 | zh_TW |
| dc.description.abstract | Autophagy, a degradation pathway, is highly conserved in all eukaryotes. It is associated with many physiological processes and elaborately regulated by various autophagy-related (Atg) proteins. In autophagy, a double-membrane vesicle named the autophagosome engulfs cytoplasmic cargoes and fuses with the lysosome/vacuole, which results in the breakdown process through the actions of vacuolar hydrolases. Generally, autophagy is considered a non-specific process, but there are selective autophagy pathways functioning in the degradation of excess organelles. In Saccharomyces cerevisiae, nonselective autophagy is highly induced under starvation environment, but a particular type of selective autophagy, the cytoplasm-to-vacuole targeting (Cvt) pathway, is constitutively active and even operates in nutrient-rich condition. Although these two pathways share the same core machinery, the specific regulators for each pathway are also required. Atg24, a PI3P-binding protein, specifically regulates the Cvt pathway, but is dispensable for the bulk autophagy. Furthermore, it is involved in the endosome trafficking pathway. Except the PI3P-binding domain, domain structure analysis of Atg24 identifies two coiled-coil domains and a BAR domain associated with amphipathic helix. The BAR domain is considered a membrane-curvature sensor. Therefore, BAR-domain containing proteins regulate membrane trafficking through facilitating lipid transfer between membranes and tethering of vesicles. In this study, I functionally characterized Atg24 in autophagy regulation. First, I found that Atg24 interacts with Atg20 through a region between the two coiled-coil domains at the C-terminus. This interaction is critical to the Cvt pathway, because Atg24 and Atg20 promote Cvt vesicle formation in a mutually dependent manner. Next, I investigated that the BAR domain of Atg24 is required for endosome trafficking, vacuolar protein sorting, and the Cvt pathway. Furthermore, I suspected that the BAR domain is essential for Atg24 binding to lipid membrane. In conclusion, I proposed that Atg24 functions after PI3P signaling in the progress of the Cvt pathway and regulates selective autophagy through the characteristic BAR domain. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:14:00Z (GMT). No. of bitstreams: 1 ntu-102-R00b41008-1.pdf: 3212634 bytes, checksum: a559029141ddf169db30dbcdbee0d64f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iv Abstract v Chapter 1: Introduction 1 1.1 The overview of autophagy 2 1.2 The role of autophagy in the cells 4 1.3 The molecular mechanism of autophagy 4 1.4 The Cvt pathway and bulk autophagy 6 1.5 The involvement of Atg24 in membrane dynamics and the Cvt pathway 7 1.6 The domain structures of Atg24 8 Chapter 2: Materials and Methods 12 2.1 Strains and media 12 2.2 Yeast two-hybrid assay 12 2.3 Fluorescence microscopy 13 2.4 Co-immunoprecipitation 13 2.5 Protease protection assay 14 2.6 Preparation of whole cell extracts for immunoblot analysis 14 2.7 Subcellular fractionation 15 Chapter 3: Results 16 3.1 Atg24 is involved in the Cvt pathway, but dispensable for bulk autophagy .. 16 3.2 The coiled-coil domain 1 of Atg24 is critical to the Cvt pathway 17 3.3 Atg24 interacts with Atg20 through the its carboxyl-terminus 18 3.4 The interaction between Atg24 and Atg20 is important to the Cvt pathway 18 3.5 The BAR domain of Atg24 is important for the Cvt pathway 20 3.6 The hydrophobic BAR domain mutant mislocalizes in the cytosol, and affects the PAS localization of Atg20 21 3.7 The Atg24 BAR domain is critical to the Cvt vesicle formation 22 3.8 Atg24 functions after PI3P signaling 24 3.9 Atg24 is also essential to endosome trafficking and vacuolar protein sorting 25 Chapter 4: Discussion 29 4.1 Atg24 forms a complex with Atg20 through its carboxyl-terminus, which is crucial for the Cvt pathway 29 4.2 Atg24 functions after PI3P signaling and mediates phagophore expansion step in the Cvt pathway 32 4.3 The amphipathic helix associated BAR domain of Atg24 is involved in membrane trafficking and formation of the Cvt vesicle 33 4.4 Atg24 is necessary for endosome trafficking and sorting of CPY 36 4.5 Insight into the organization of Atg11-Atg20-Atg24 complex 38 References 40 Tables 50 Figure legends 57 Figure 1 57 Figure 2 59 Figure 3 61 Figure 4 64 Figure 5 66 Figure 6 68 Figure 7 70 Figure 8 74 Figure 9 76 Figure 10 78 Figure 11 80 Figure 12 82 Figure 13 84 Figure 14 88 | |
| dc.language.iso | en | |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | Atg24 | zh_TW |
| dc.subject | 細胞質至液胞傳遞途徑 | zh_TW |
| dc.subject | the Cvt pathway | en |
| dc.subject | Atg24 | en |
| dc.subject | autophagy | en |
| dc.title | 探討Atg24之功能與結構在細胞自噬上所扮演的角色 | zh_TW |
| dc.title | Functional characterization of Atg24 domains in autophagy regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 潘建源(Chien-Yuan Pan),李士傑(Shyh-Jye Lee),朱家瑩(Chia-Ying Chu) | |
| dc.subject.keyword | 細胞自噬,細胞質至液胞傳遞途徑,Atg24, | zh_TW |
| dc.subject.keyword | autophagy,the Cvt pathway,Atg24, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
