Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立德
dc.contributor.authorYi Hoen
dc.contributor.author何易zh_TW
dc.date.accessioned2021-06-16T13:12:55Z-
dc.date.available2013-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citation[1] Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155-70.
[2] LeGeros RZ, Craig RG. Strategies to affect bone remodeling: osteointegration. J Bone Miner Res. 1993 Dec;8 Suppl 2:S583-96.
[3] Krause A, Cowles EA, Gronowicz G. Integrin-mediated signaling in osteoblasts on titanium implant materials. J Biomed Mater Res. 2000 Dec 15;52(4):738-47.
[4] Stanford CM, Keller JC. The concept of osseointegration and bone matrix expression. Crit Rev Oral Biol Med. 1991;2(1):83-101.
[5] Swart KM, Keller JC, Wightman JP, Draughn RA, Stanford CM, Michaels CM. Short-term plasma-cleaning treatments enhance in vitro osteoblast attachment to titanium. J Oral Implantol. 1992;18(2):130-7.
[6] Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998 Sep-Oct;11(5):391-401.
[7] Jayaraman M, Meyer U, Buhner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004 Feb;25(4):625-31.
[8] Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 2005 Mar;1(2):211-22.
[9] Sammons RL, Lumbikanonda N, Gross M, Cantzler P. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Clin Oral Implants Res. 2005 Dec;16(6):657-66.
[10] Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004 Aug;25(18):4087-103.
[11] Sader MS, Balduino A, Soares Gde A, Borojevic R. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Clin Oral Implants Res. 2005 Dec;16(6):667-75.
[12] Brunette DM. The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants. 1988 Winter;3(4):231-46.
[13] Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Jr., et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res. 1995 Mar;29(3):389-401.
[14] Postiglione L, Di Domenico G, Ramaglia L, Montagnani S, Salzano S, Di Meglio F, et al. Behavior of SaOS-2 cells cultured on different titanium surfaces. J Dent Res. 2003 Sep;82(9):692-6.
[15] Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A. 2004 Jun 1;69(3):462-8.
[16] Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, et al. Implant surface roughness affects osteoblast gene expression. J Dent Res. 2003 May;82(5):372-6.
[17] Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res. 2004 Dec;15(6):683-92.
[18] Masaki C, Schneider GB, Zaharias R, Seabold D, Stanford C. Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Implants Res. 2005 Dec;16(6):650-6.
[19] Lohmann CH, Tandy EM, Sylvia VL, Hell-Vocke AK, Cochran DL, Dean DD, et al. Response of normal female human osteoblasts (NHOst) to 17beta-estradiol is modulated by implant surface morphology. J Biomed Mater Res. 2002 Nov;62(2):204-13.
[20] Thull R. Physicochemical principles of tissue material interactions. Biomol Eng. 2002 Aug;19(2-6):43-50.
[21] Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. J Bioeng. 1977 Jan;1(2):79-92.
[22] Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7(3):25-42.
[23] Yang Y, Cavin R, Ong JL. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J Biomed Mater Res A. 2003 Oct 1;67(1):344-9.
[24] Okamoto K, Matsuura T, Hosokawa R, Akagawa Y. RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium. J Dent Res. 1998 Mar;77(3):481-7.
[25] Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials. 2000 Jun;21(11):1121-7.
[26] Jain R, Von Recum AF. Fibroblast attachment to smooth and microtextured PET and thin cp-Ti films. J Biomed Mater Res A. 2004 Feb 1;68(2):296-304.
[27] Diener A, Nebe B, Luthen F, Becker P, Beck U, Neumann HG, et al. Control of focal adhesion dynamics by material surface characteristics. Biomaterials. 2005 Feb;26(4):383-92.
[28] van der Pauw MT, Everts V, Beertsen W. Expression of integrins by human periodontal ligament and gingival fibroblasts and their involvement in fibroblast adhesion to enamel matrix-derived proteins. J Periodontal Res. 2002 Oct;37(5):317-23.
[29] Grzesik WJ, Ivanov B, Robey FA, Southerland J, Yamauchi M. Synthetic integrin-binding peptides promote adhesion and proliferation of human periodontal ligament cells in vitro. J Dent Res. 1998 Aug;77(8):1606-12.
[30] Kramer PR, Janikkeith A, Cai Z, Ma S, Watanabe I. Integrin mediated attachment of periodontal ligament to titanium surfaces. Dent Mater. 2009 Jul;25(7):877-83.
[31] Wang L, Zhao G, Olivares-Navarrete R, Bell BF, Wieland M, Cochran DL, et al. Integrin beta1 silencing in osteoblasts alters substrate-dependent responses to 1,25-dihydroxy vitamin D3. Biomaterials. 2006 Jul;27(20):3716-25.
[32] Keselowsky BG, Wang L, Schwartz Z, Garcia AJ, Boyan BD. Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J Biomed Mater Res A. 2007 Mar 1;80(3):700-10.
[33] Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials: integrin-mediated adhesion. J Orthop Res. 1996 Nov;14(6):878-87.
[34] Gronthos S, Stewart K, Graves SE, Hay S, Simmons PJ. Integrin expression and function on human osteoblast-like cells. J Bone Miner Res. 1997 Aug;12(8):1189-97.
[35] Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone. 1996 May;18(5):451-7.
[36] Rezania A, Healy KE. Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces. J Orthop Res. 1999 Jul;17(4):615-23.
[37] Siebers MC, Walboomers XF, van den Dolder J, Leeuwenburgh SC, Wolke JG, Jansen JA. The behavior of osteoblast-like cells on various substrates with functional blocking of integrin-beta1 and integrin-beta3. J Mater Sci Mater Med. 2008 Feb;19(2):861-8.
[38] Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15767-72.
[39] Chan KT, Cortesio CL, Huttenlocher A. Integrins in cell migration. Methods Enzymol. 2007;426:47-67.
[40] Lynne Cassimeris GP, Vishwanath R. Lingappa. Lewin's Cells, Second Edition, 2010.
[41] Bruce Alberts AJ, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Molecular Biology of the Cell, 5th Edition, 2007.
[42] Damji A, Weston L, Brunette DM. Directed confrontations between fibroblasts and epithelial cells on micromachined grooved substrata. Exp Cell Res. 1996 Oct 10;228(1):114-24.
[43] Rice JM, Hunt JA, Gallagher JA, Hanarp P, Sutherland DS, Gold J. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials. 2003 Nov;24(26):4799-818.
[44] Kudelska-Mazur D, Lewandowska-Szumiel M, Mazur M, Komender J. Osteogenic cell contact with biomaterials influences phenotype expression. Cell Tissue Bank. 2005;6(1):55-64.
[45] Chehroudi B, Gould TR, Brunette DM. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res. 1989 Sep;23(9):1067-85.
[46] Chehroudi B, Gould TR, Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J Biomed Mater Res. 1990 Sep;24(9):1203-19.
[47] Chehroudi B, Gould TR, Brunette DM. A light and electron microscopic study of the effects of surface topography on the behavior of cells attached to titanium-coated percutaneous implants. J Biomed Mater Res. 1991 Mar;25(3):387-405.
[48] Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants. J Biomed Mater Res. 1992 Apr;26(4):493-515.
[49] Oakley C, Brunette DM. Response of single, pairs, and clusters of epithelial cells to substratum topography. Biochem Cell Biol. 1995 Jul-Aug;73(7-8):473-89.
[50] Bellows CG, Aubin JE, Heersche JN, Antosz ME. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int. 1986 Mar;38(3):143-54.
[51] Hughes FJ, Collyer J, Stanfield M, Goodman SA. The effects of bone morphogenetic protein-2, -4, and -6 on differentiation of rat osteoblast cells in vitro. Endocrinology. 1995 Jun;136(6):2671-7.
[52] Lohmann CH, Bonewald LF, Sisk MA, Sylvia VL, Cochran DL, Dean DD, et al. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J Bone Miner Res. 2000 Jun;15(6):1169-80.
[53] Sinha RK, Morris F, Shah SA, Tuan RS. Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Clin Orthop Relat Res. 1994 Aug(305):258-72.
[54] Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials. 2000 Aug;21(15):1567-77.
[55] Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 2000 Sep-Oct;15(5):675-90.
[56] Linder L, Albrektsson T, Branemark PI, Hansson HA, Ivarsson B, Jonsson U, et al. Electron microscopic analysis of the bone-titanium interface. Acta Orthop Scand. 1983 Feb;54(1):45-52.
[57] Shalabi MM, Wolke JG, Cuijpers VM, Jansen JA. Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography. J Mater Sci Mater Med. 2007 Oct;18(10):2033-9.
[58] Walboomers XF, Habraken WJ, Feddes B, Winter LC, Bumgardner JD, Jansen JA. Stretch-mediated responses of osteoblast-like cells cultured on titanium-coated substrates in vitro. J Biomed Mater Res A. 2004 Apr 1;69(1):131-9.
[59] Horwitz AR, Parsons JT. Cell migration--movin' on. Science. 1999 Nov 5;286(5442):1102-3.
[60] Horwitz R, Webb D. Cell migration. Curr Biol. 2003 Sep 30;13(19):R756-9.
[61] Burridge K, Chrzanowska-Wodnicka M, Zhong C. Focal adhesion assembly. Trends Cell Biol. 1997 Sep;7(9):342-7.
[62] Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials. 2005 Jan;26(2):137-46.
[63] Castoldi M, Pistone M, Caruso C, Puddu A, Filanti C, Piccini D, et al. Osteoblastic cells from rat long bone. II: Adhesion to substrata and integrin expression in primary and propagated cultures. Cell Biol Int. 1997 Jan;21(1):7-16.
[64] Schneider GB, Whitson SW, Cooper LF. Restricted and coordinated expression of beta3-integrin and bone sialoprotein during cultured osteoblast differentiation. Bone. 1999 Apr;24(4):321-7.
[65] Clover J, Dodds RA, Gowen M. Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J Cell Sci. 1992 Sep;103 ( Pt 1):267-71.
[66] Gronowicz GA, McCarthy MB. Glucocorticoids inhibit the attachment of osteoblasts to bone extracellular matrix proteins and decrease beta 1-integrin levels. Endocrinology. 1995 Feb;136(2):598-608.
[67] Moursi AM, Damsky CH, Lull J, Zimmerman D, Doty SB, Aota S, et al. Fibronectin regulates calvarial osteoblast differentiation. J Cell Sci. 1996 Jun;109 ( Pt 6):1369-80.
[68] Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci. 1997 Sep;110 ( Pt 18):2187-96.
[69] Luthen F, Lange R, Becker P, Rychly J, Beck U, Nebe JG. The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials. 2005 May;26(15):2423-40.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61780-
dc.description.abstract研究目的:
牙科純鈦植體手術植入骨內後,會與周圍骨骼緊密結合,稱為骨整合。鈦金屬表面擁有正確的化學組成與表面形貌能夠促進細胞的貼附及增加某些成骨細胞相關基因的表現,對於骨整合極為關鍵。在本論文中,將純鈦蒸鍍於蓋玻片表面,並適當控制其蒸鍍厚度成為半透明,使其可以用於觀察細胞在鈦表面的行為。此種鈦表面命名為“TiGlass”,首先以儀器進行了多項表面的鑑定,其後以此鈦表面進行了一系列的實驗,期能深入探討成骨細胞貼附在鈦表面的詳細機制。
材料與方法:
本論文中使用的“TiGlass”為半透明之鈦表面,由於其光學性質優良,可以應用於高倍數穿透式光學顯微鏡,使得原本無法以傳統方式觀察的不透明鈦金屬表面變為一可培養細胞及觀察的基質,能夠觀察正常細胞在鈦表面的生理及爬行,為雷射掃描共軛焦顯微鏡所無法達到之功能。“TiGlass”首先經過掃描式電子顯微鏡(SEM),表面元素分析(EDX),及原子力顯微鏡(AFM)等方式鑑定表面性質以便了解其物理特性。之後,“TiGlass”應用在成骨細胞的隨機遷移分析,量測成骨細胞附著後相關基因的表現,以及用於觀察全細胞免疫螢光染色。免疫螢光染色使用兩種抗體,進行雙重染色觀察不同抗原之間的相對分佈關係及分析關連性。首先,先觀察vinculin及F-actin之間的關係,然後分別於含有胎牛血清及不含胎牛血清的環境下分析vinculin及pFAK之間的關係,藉以了解focal adhesion之處的FAK是否有磷酸化及進行訊息傳遞。其後,以不同組合蛋白次元體(integrin subunit)針對vinculin進行雙重免疫螢光染色,縮小可能參與細胞貼附的integrin subunit種類。最後,挑出integrin subunit α5, αν, β3出來進一步分析,以integrin subunit α5, αν分別針對β3進行雙重染色,及以integrin subunit α5, αν, β3, ανβ3 針對 F-actin 雙重染色,藉以了解integrin subunit α5, αν,β3在成骨細胞貼附至鈦表面過程中所參與的角色。
結果:
由初級培養所得的大鼠顱骨成骨細胞在“TiGlass”表面的隨機遷移分析顯示蒸鍍在玻璃表面的鈦會增加成骨細胞的遷移速度,而且大幅縮短從附著在表面到開始遷移的時間差。使用MG-63 成骨細胞作相同的隨機遷移分析也得到極為類似的結果,可見鈦造成的此種效果與細胞種類無關。以平滑的“TiGlass”表面用於成骨細胞相關基因表現則發現與對照組之間沒有明顯差異。“TiGlass”用於穿透式螢光顯微鏡的細胞表面螢光觀察則可清楚看到actin filament 與vinculin 在空間上的互相重疊關係。利用雙重免疫螢光染色的方式,可以發現在focal adhesions之處的FAK均有磷酸化的現象,因而可以推測成骨細胞以integrin 附著在鈦及玻璃的表面。進一步研究成骨細胞在玻璃表面所形成的focal adhesions組成發現主要由αν 與β3 integrin subunits所構成。然而,除了上述兩者,成骨細胞在“TiGlass”表面的focal adhesions組成可能尚有integrin subunits α5參與其中。以integrin subunits α5,αν,β3,及 ανβ3與F-actin做雙重免疫螢光染色的結果則也顯示出integrin subunits α5對於成骨細胞貼附在鈦表面扮演輔助性角色。
結論:
將表面蒸鍍純鈦蓋玻片應用於細胞生物學可發現此層鈦鍍膜會改變成骨細胞的遷移行為模式,增強初期貼附能力及增加成骨細胞的遷移速度。利用顯微鏡作細胞表面螢光觀察則有助於分析成骨細胞在鈦表面貼附所產生的focal adhesion之組成。綜合一系列研究之結果,成骨細胞貼附在鈦表面所產生的focal adhesion主要由 integrin ανβ3所構成。但是除了對照組的玻璃表面也有的integrin ανβ3以外,鈦表面上的組成尚多了α5 subunit。此組成上的不同有可能是成骨細胞能夠在鈦表面上較早開始遷移及以較快的速度遷移的主要原因。
zh_TW
dc.description.abstractPurpose: Titanium with proper surface composition and topography is crucial for dental implant osseointegration, and has been known to enhance cell adhesion and promote expression of specific osteoblastic genes. In this study, a translucent titanium coating on glass coverslip, “TiGlass”, was introduced as a new tool for direct observation of cell behavior on titanium surface. The surface was characterized, and a series of studies were conducted to clarify the mechanism of osteoblastic adhesion on titanium surface.
Material and Methods: The translucent titanium surface offers excellent optical characteristics that facilitate transmitted light observations under the optical microscopes, thereby transforming the opaque metal into an observable titanium matrix. With laser scanning confocal microscopy, only cells expressing fluorescent proteins could be observed on titanium surfaces. With TiGlass, migration of normal cells can now be observed under the optical microscopes. SEM, EDX, and AFM analyses were performed on TiGlass to understand its physical properties. Random migration analysis, osteoblastic gene expression, and immunofluorescence cell staining on TiGlass were then studied. In the immunofluorescent double staining, vinculin was first tested with F-actin, and then pFAK was tested with vinculin to see whether the focal adhesions were activated. Various integrin subunits were then tested with vinculin to study the composition of activated focal adhesions. Integrin subunit α5, αν were tested against β3; Integrin subunit α5, αν, β3, ανβ3 were tested with F-actin, respectively.
Results: Random migration analysis of the primary rat calvarial osteoblasts on TiGlass revealed that the titanium coating enhanced the migration speed of the MG-63 osteoblasts, and significantly shortened the time lag for the initial migration behavior. The same phenomenon was found in random migration analysis of the rat calvarial osteoblasts. Further study of osteoblastic gene expression on this smooth titanium surface revealed no significant change. Co-localization of actin filament and vinculin was found on TiGlass under epifluorescent microscopy. Immunofluorescent double staining revealed all focal adhesions contained activated FAK on both surfaces. The osteoblast was inferred to made adhesion to titanium and glass through integrins. The focal adhesions on glass were found to be composed of integrin subunits αν and β3. However, on “TiGlass”, integrin subunits α5 might have supplemented the adhesion to titanium. Results from double staining of integrin subunits α5, αν, β3, and ανβ3 with F-actin also supported integrin subunits α5 might have involved in adhesion of titanium.
Concluison: The application of translucent titanium-coated coverslip in cell-biology studies revealed that titanium coating altered the migration pattern of osteoblasts. The results suggested that titanium promotes initial adhesion and accelerates osteoblast migration. Epifluorescence microscopic studies were conducted to find out the composition of focal adhesion on titanium surface. Collectively, we may conclude the osteoblasts adhere to titanium coating through focal adhesions composed of most integrin ανβ3 and some integrin combination of α5 subunit, resulting in faster and earlier migration on titanium.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:12:55Z (GMT). No. of bitstreams: 1
ntu-102-D93422001-1.pdf: 9001315 bytes, checksum: 60bba9471abe992fdf104b129f1f82af (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………….2
誌謝…………………………………………..…………………………………………..….3
Abstract…………………………………………………………………………..……...…...5
中文摘要…………………………………………………….…………………….………...8
表目錄. …………………………………………………….…………………….………...14
圖目錄. …………………………………………………….…………………….………...15
Chapter 1 INTRODUCTION
1.1 Osseointegration and adhesion of osteoblasts………………………………….....17
1.2 The mechanism of osteoblastic adhesion to titanium……………………………..20
1.3 Integrins and FAK……………………...………………………………................22
1.4 Studying osteoblast on titanium surfaces…….………............................................24
1.5 Experimental design……………………………………………………................26
Chapter 2 MATERIALS and METHODS
2.1 Translucent titanium surfaces preparation……………………………...………...28
2.2 Cell culture…………………………………………………………….....….……29
2.2.1 Rat calvarial (RC) cells………………………………………...…….……29
2.2.2 MG-63 cells…………………………………………………………..……30
2.3 Characterization of the titanium coating……………………………………….…31
2.4 Analysis of cell migration………………………………………..……….………32
2.4.1 RC cells……………………………………………..……..……..….……32
2.4.2 MG-63 cells……………………………………….………………………33
2.5 Gene expression………………………………………………………………..…34
2.6 Immunofluorescence Cell Staining……………………………………...……..…35
2.6.1 Vinculin v.s. F-actin………………..……..…….…………………………35
2.6.2 pFAK v.s. vinculin……………………………………….……………...…36
2.6.3 Integrin subunits v.s. vinculin…………………………………………..…37
2.6.4 The role of β3 integrin subunits………………………….…………..……38
2.6.5 Integrin subunits α5, αν, β3 and integrin ανβ3 v.s. F-actin………………39
2.7 Statistical Analysis………………………………………………………..………40
Chapter 3 RESULTS
3.1 SEM…………………………………..………………………………................……...41
3.2 EDX…………………………………..……………………………................………...41
3.3 AFM…………………………………..……………………………………...………...42
3.4 Cell Migration of RC cells…………………………………………….…………….…43
3.5 Cell Migration of MG-63 cells…………………………………....................................44
3.6 Gene expression…………………………………..........................................................45
3.7 Immunofluorescence Cell Staining………………………………….............................47
3.7.1 Immunofluorescence Cell Staining- vinculin v.s. F-actin……..…………..……47
3.7.2 Immunofluorescence Cell Staining- pFAK v.s. vinculin……….……….………48
3.7.3 Immunofluorescence Cell Staining- integrin subunits v.s. vinculin………….…49
3.7.4 Immunofluorescence Cell Staining- The role of β3 integrin subunits……….…51
3.7.5 Immunofluorescence Cell Staining- α5, αν, β3 integrin subunits and
integrin ανβ3 v.s. F-actin………………….……………………….………….52
Chapter 4 DISCUSSION……………………………………………………………..53
4.1 Cell migration……………………………………………………………………...…...56
4.2 Gene expression……………………………………………………………..…………59
4.3 Immunofluorescent cell staining…………………………………………….................61
4.4 Expression of Integrins………………………….……..................................................63
4.5 Future research directions…………….………….……..................................................65
Chapter 5 CONCLUSIONS………………………………………………………….67
References…………………………………………………………………….…………....69
Tables…………………………………………………………………….............................78
Figures and figure legends………………...………………………………………….….....85
Appendix: Accepted manuscripts……………….……………………………..…………..113
dc.language.isoen
dc.subject鈦zh_TW
dc.subject半透明zh_TW
dc.subject成骨細胞zh_TW
dc.subject貼附zh_TW
dc.subject遷移zh_TW
dc.subject組合蛋白zh_TW
dc.subjectIntegrinen
dc.subjectTitaniumen
dc.subjectTranslucenten
dc.subjectOsteoblastsen
dc.subjectAdhesionen
dc.subjectMigrationen
dc.title鈦表面成骨細胞之遷移行為及貼附機制zh_TW
dc.titleMigration Behavior and Adhesion Mechanism of Osteoblasts on Titanium Surfacesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.coadvisor郭生興
dc.contributor.oralexamcommittee洪志遠,王若松,張百恩
dc.subject.keyword鈦,半透明,成骨細胞,貼附,遷移,組合蛋白,zh_TW
dc.subject.keywordTitanium,Translucent,Osteoblasts,Adhesion,Migration,Integrin,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2013-07-30
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved