Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61751
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良正(Liang-Jenq Leu)
dc.contributor.authorKo-Wei Shihen
dc.contributor.author施可葳zh_TW
dc.date.accessioned2021-06-16T13:11:49Z-
dc.date.available2014-08-06
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citationAndreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O. Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization 2011; 43(1): 1-16.
Arora JS. Introduction to Optimum Design. McGraw-Hill, Singapore, 1989.
Bendsoe MP. Optimal shape design as a material distribution problem. Structural and Multidisciplinary Optimization 1989; 1(4):193-202.
Bendsoe MP, Sigmund O. Topology Optimization-Theory, Methods and Applications. Springer: Berlin, Heidelberg, 2003.
Bendsoe MP, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics 1999; 69(9-10):635-654.
Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 1988; 71(2):197-224.
Benssousan A, Lions JL, Papanicoulau G. Asymptotic analysis for periodic structures. North-Holland, Amsterdam, 1978.
Cioranescu D, Paulin JSJ. Homogenization in open sets with holes. Journal of mathematical analysis and applications 1979; 71(2): 590-607.
Franců J. Homogenization of linear elasticity equations. Aplikace matematiky 1982; 27(2): 96-117.
Guest J, Prevost J, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering 2004; 61(2):238-254.
Hassani B. A direct method to derive the boundary conditions of the homogenization equation for symmetric cells. Communications in Numerical Methods in Engineering 1996; 12(3): 185-196.
Hassani B, Hinton E. A review of homogenization and topology opimization I- homogenization theory for media with periodic structure. Computers & structures 1998; 69(6): 707-717.
Hassani B, Hinton E. A review of homogenization and topology opimization II-analytical and numerical solution of homogenization equations. Computers & structures 1998; 69(6): 719-738.
Huang X, Xie YM. Convergent and Mesh-independent Solutions for The Bi-directional Evolutionary Structural Optimization Method. Finite Elements in Analysis and Design 2007; 43(14): 1039-1049.
Huang X, Xie YM. Optimal design of periodic structures using evolutionary topology optimization. Structural and Multidisciplinary Optimization 2008; 36(6): 597-606.
Huang X, Zhou SW, Xie YM, Li Q. Topology optimization of microstructures of cellular materials and composites for macrostructures. Computational Materials Science 2013; 67: 397-407.
Li Q, Steven GP, Xie YM. A simple checkerboard suppression algorithm for evolutionary structural optimization. Structural and Multidisciplinary Optimization 2001; 22(3): 230-239.
Mei Y, Wang X. A Level Set Method for Structural Topology Optimization and Its Applications. Advances in Engineering Software 2004. 35(7): 415-441.
Querin OM, Steven GP, Xie YM. Evolutionary structural optimization (ESO) using a bidirectional algorithm. Engineering Computations 1998; 15(8): 1031-1048.
Rozvany GIN, Zhou M, Birker T. Generalized shape optimization without homogenization. Structural Optimization 1992; 4(3-4): 250-252.
Rouhi M, Rais-Rohani M, Williams TN. Element exchange method for topology optimization. Structural and Multidisciplinary Optimization 2010; 42(2):215-231.
Sigmund O. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization 2001; 21(2): 120-127.
Sanchez-Palencia E. Non-homogeneous media and vibration theory. Non-homogeneous media and vibration theory 1980; 127.
Shih KW, Guo JY, Leu LJ. An Improved Element Exchange Method for Topology Optimization with Less Dependence on Initial Topology. Proceedings of the 25th KKCNN Symposium on Civil Engineering 2012, Busan, Korea.
Venkayya VB. Structural Optimization: Status and Promise, AIAA Series: Progress in Aeronautics and Astronautics, Vol. 150, AIAA, Washington D.C., 1993.
Wang MY, Wang X, Guo D. A Level Set Method for Structural Topology Optimization. Computer Methods in Applied Mechanics and Engineering 2003; 192(1-2): 227-246.
Wang MY, Wang X. ”Color” Level Sets: a Multi-phase Method for Structural Topology Optimization with Multiple Materials. Computer Methods in Applied Mechanics and Engineering 2004; 193(6-8): 469-496.
Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Computers & Structures 1993; 49(5):885-896.
Xie YM, Steven GP. Evolutionary structural optimization. Springer: New York, 2003.
Xie YM, Zuo ZH, Huang X, Rong JH. Convergence of topological patterns of optimal periodic structures under multiple scales. Structural and Multidisciplinary Optimization 2012; 46(1): 41-50.
Yang XY, Xie YM, Steven GP, Querin OM. Bidurectional Evolutionay Method for Stiffness Optimization. AIAA Journal 1999; 37(11): 1483-1488.
Zhou S, Wang MY. Multimaterial Structural Topology Optimization with a Generalized Cahn-Hilliard Model of Multiphase Transition. Structural and Multidisciplinary Optimization 2007; 33(2): 89-111.
Zuo ZH, Huang X, Yang X, Rong JH, Xie YM. Comparing optimal material microstructures with optimal periodic structures. Computational Materials Science 2013; 69: 137-147.
李宗豪,以有限元素套裝軟體為分析引擎之最佳化設計系統架構開發,國立台灣大學土木工程學研究所碩士論文,2005。
施宏璋,交換式最佳演進法於多材料之結構拓樸最佳化設計,中原大學土木工程研究所碩士論文,2008。
徐千泰,多重材料配置及支承位置最佳化之橋梁結構設計,國立台灣大學土木工程學研究所碩士論文,2009。
呂其翰,雙向結構最佳化演進法及多重材料拓樸最佳化之探討,國立台灣大學土木工程學研究所碩士論文,2010。
郭哲宇,加入隨機化之拓樸最佳化方法之研究及應用,國立台灣大學土木工程學研究所碩士論文,2011。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61751-
dc.description.abstract本研究內容著重於改良既有之元素交換法(Element exchange method, EEM)並應用於結構拓樸最佳化設計。本研究團隊近年研究主要使用演進式結構最佳化系列方法如ESO、BESO、GESO等;相較於其他常見方法使用連續設計變數,此系列使用離散設計變數,在最後拓樸結果可容易地界定材料範圍;再者本系列方法流程簡單、擴充容易,計算負荷亦較小,實際應用於工程設計的可行性便大幅增加。本研究使用之EEM可算演進式結構最佳化方法的一個分支,其特點在於保有BESO雙向演化之優點,卻簡化了BESO繁瑣的投影策略,使最佳化設計具有更大的自由度。
若將本研究略分為改良與應用兩個層面,改良方面旨在改善初始拓樸相依性問題與解除原始EEM對材料初始體積之限制。
初始拓樸對最佳化結果影響極為劇烈,尤其ESO系列方法並非以求取全域最佳解為考量,而是藉由迭代讓結構一步步往較好的方向演進,此時初始拓樸配置不良就很容易使得演進落入局域解而無法跳脫;雖然EEM有隨機交換機制但其效用有限。為此本研究提出影響區法(Influence zone method),對高應變能元素及其周圍元素做加權處理,使幾何相對位置等全域資訊也能一併考量。由數值結果顯示,影響區法可有效解決初始拓樸相依性問題。
多數結構拓樸最佳化演算法,材料初始體積會受到演算法操作流程之限制;例如ESO必須由全部實心元素佈滿開始、原始EEM更限制不論哪個迭代步,材料體積固定與其目標體積相等。有這種種限制會對演算法的擴充造成阻礙。為此本研究提出一套變體積函數方法(Volume-changeable function),只需要兩個調整參數,藉由每步互換不等量元素,由任意初始拓樸逐漸收斂至目標體積。
應用層面旨在將EEM應用於多重材料最佳化與微結構最佳化之設計。本研究參考前人所歸納之演進策略,提出多重材料版本的變體積函數使EEM能夠處理各材料初始體積皆可任意指定之多重材料設計問題。並參考前人以最小化材料介面來處理材料集中化之方法,提出一較為簡易的EEM操作版本。
微結構設計方面,傳統微結構設計僅在微觀尺度上操作,利用均質化法最小化與目標材料常數之間差距,此種作法忽略了巨觀、微觀尺度之間耦合關係,且當巨觀尺度邊界條件變化時要人工找尋新的一組目標材料常數,費工費時。本研究參考國外文獻,結合均質化公式與多尺度耦合設計,以EEM完成微結構設計流程,如此可在給定巨觀尺度邊界條件下自動設計出最佳微觀結構。數值結果與參考文獻結果十分吻合。
zh_TW
dc.description.abstractElement exchange method (EEM; Rouhi et al. 2010) is a new method on structural topology optimizations. EEM implementation is straightforward for compliance minimization problems. Although the original EEM algorithm is highly adaptable to compliance minimization, it still has initial-topology-dependence problem. To resolve the problem, an enhanced approach which includes two modification schemes is proposed in this thesis.
First, the concept of “influence zone” is proposed. Influence zone is a simple and effective filter to weight the strain energy of elements in a circular zone, which surrounds the elements with higher strain energy such as boundary, loaded, and supported elements. Thus, the evolutionary processes could reach uniform results from different initial topologies. Second, it uses a volume-changeable function to modify the number of exchanged elements in case the initial volume of solid elements is not as the same as its objective volume.
This thesis also researches in two application fields. First, a new version of EEM combined with volume-changeable function is proposed to deal with “multi-material topology design,” and adds the material interface length into the objective function to realize topology concentration.
Second, this thesis refers to Huang et al. (2013) which combined homogenized method and multi-scale design, and completes design procedure of microstructure by EEM. Therefore, it could altomatically design optimal microstructure in the given macro scale boundary condition. Numerical results are verified by reference.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:11:49Z (GMT). No. of bitstreams: 1
ntu-102-R00521212-1.pdf: 2432385 bytes, checksum: 8bac43f2ab954106bca4fc9ff1f6b50f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究內容 3
第二章 結構最佳化方法 5
2.1 前言 5
2.2 最佳化問題描述 5
2.3 元素交換法 6
2.3.1 EEM方法之參數 7
2.3.2 元素交換機制(Element Exchange, EE) 7
2.3.3 隨機交換機制(Random Shuffle, RS) 8
2.3.4 棋盤化效應(Checkerboard) 8
2.3.5 停止條件 9
2.3.6 方法流程 9
2.4 小結 12
第三章 改良既有拓樸最佳化方法 17
3.1 前言 17
3.2 初始拓樸相依性問題 18
3.2.1 問題描述 18
3.2.2 影響區法(Influence Zone Method) 20
3.2.3 參數選擇 21
3.3 變體積函數(Volume-Changeable Function) 23
3.4 小結 25
第四章 多重材料最佳化 33
4.1 前言 33
4.2 文獻回顧 33
4.3 多重材料最佳化 35
4.3.1 演進策略 35
4.3.2 多重材料變體積函數 36
4.4 材料集中化 38
4.4.1 敏感度因子 38
4.4.2 加入材料集中化之最佳化流程 40
4.5 小結 42
第五章 微結構最佳化 49
5.1 前言 49
5.2 文獻回顧 49
5.3 均質化公式(Homogenization Equation) 51
5.3.1 均質化公式推導 51
5.3.2 邊界條件 57
5.4 多尺度耦合設計法 59
5.4.1 敏感度因子 59
5.4.2 最佳化流程 60
5.5 小結 62
第六章 結論與後續研究 69
6.1 結論 69
6.1.1 改良層面 69
6.1.2 應用層面 69
6.2 後續研究 70
參考文獻 71
dc.language.isozh-TW
dc.subject均質化zh_TW
dc.subject週期性材料zh_TW
dc.subject微結構zh_TW
dc.subject多重材料zh_TW
dc.subject元素交換法zh_TW
dc.subject拓樸最佳化zh_TW
dc.subject結構最佳化zh_TW
dc.subjectMicrostructureen
dc.subjectElement Exchange Methoden
dc.subjectTopology Optimizationen
dc.subjectMulti-materialen
dc.subjectPeriodic Materialen
dc.subjectHomogenizationen
dc.subjectStructural Optimizationen
dc.title元素交換法於結構拓樸最佳化之改良與應用zh_TW
dc.titleImprovements and Applications of Element Exchanged Method in Structural Topology Optimizationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭世榮,宋裕祺,黃仲偉
dc.subject.keyword結構最佳化,拓樸最佳化,元素交換法,多重材料,微結構,均質化,週期性材料,zh_TW
dc.subject.keywordStructural Optimization,Topology Optimization,Element Exchange Method,Multi-material,Microstructure,Homogenization,Periodic Material,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2013-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved