請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭榮和(Jung-Ho Cheng) | |
| dc.contributor.author | Wen-Chieh Cheng | en |
| dc.contributor.author | 鄭文傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:09:28Z | - |
| dc.date.available | 2013-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-31 | |
| dc.identifier.citation | [1] 'Annual Energy Review 2011,' U.S. Energy Information Administration.
[2] http://www.chevrolet.com/volt-electric-car.html. [3] http://www.toyota.com.tw/. [4] http://www.honda-taiwan.com.tw/. [5] 黃藍逸, '主要國家輕型車輛碳排放、燃油經濟性及溫室氣體排放法規綜觀,' 金屬中心產業研究組, 2011. [6] C. Mi, M. A. Masrur, and A. W. Gao, 'Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives,' A John Wiley & Sons, Ltd., pp.13-26, 2011. [7] 解潘祥, '複合電動車輛動力系統介紹,' 機械工業雜誌, 2001. [8] 張耀峰, '混合動力車.' [9] K. Jana, 'Electric Vehicle Application Handbook For Genesis Sealed-Lead Battery, Fourth Edition,' Hawker Energy Products Inc, 1998. [10] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, 'Battery Choice and Management for New-Generation Electric Vehicles,' IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, 2005. [11] 許家興, '電動車電池類型與電池基礎介紹,' 財團法人車輛研究測試中心, 2009. [12] 孫清華, '最新可充電電池技術大全(修訂版):,' 全華科技圖書股份有限公司, 2003. [13] 蘇汶航, '動力電池落下衝擊分析研究,' 碩士論文, 機械工程學系, 國立台灣大學, 2012. [14] http://greenmachine.honda.tw/#/insight-color. [15] http://www.lexus.com.tw/cars.aspx?typ=52#/RX450h_spec. [16] http://www.toyota.com/prius-hybrid/specs.html. [17] http://en.wikipedia.org/wiki/Chevrolet_Volt. [18] P. E. Pascoe and A. H. Anbuky, 'Standby VRLA Battery Reserve Life Estimation,' IEEE, 2004. [19] A. A. Pesaran, 'Battery Thermal Management in EVs and HEVs: Issues and Solutions,' Advanced Automotive Battery Conference, Las Vegas, 2001. [20] A. A. Pesaran, 'Battery Thermal Models for Hybrid Vehicle Simulations,' Journal of Power Sources, 2002. [21] L. Serrao, Z. Chehab, Y. Guezennec, and G. Rizzoni, 'An Aging Model of Ni-MH Batteries for Hybrid Electric Vehicles,' The Ohio State University, Center for Automotive Research, USA, 2005. [22] R. B. D. Souza and F. G. Dedini, 'Energy Management Strategy for Hybrid Electric Vehicles,' SAE International, 2009. [23] 張洪為, '便攜式產品的'心臟'及其護理--鋰離子電池原理及充電管理的設計探討,' Texas Instruments Corp., 2004. [24] F. Hoffart, 'Extend Battery Life with Proper Charging, Discharging,' EE Times-Asia, 2008. [25] N. Omar, J. V. Mierlo, B. Verbrugge, and P. V. d. Bossche, 'Power and Life Enhancement of Battery-electrical Double Layer Capacitor for Hybrid Electric and Charge-depleting Plug-in Vehicle Applications,' Elsevier Ltd., 2010. [26] R. Carter, A. Cruden, and P. J. Hall, 'Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle,' IEEE Transactions on Vehicular Technology, Vol. 61, No. 4, 2012. [27] H. T. Lin, T. J. Liang, and S. M. Chen, 'The State-of-Health Diagnosis of Li-Co Batteries with Fuzzy Identification,' IEEE 7th International Power Electronics and Motion Control Conference - ECCE Asia, Harbin, China, 2012. [28] C. Hochgraf, M. Ryan, and H. Wiegman, 'Engine Control Strategy for a Series Hybrid Electric Vehicle Incorporating Load-leveling and Computer Controlled Energy Management,' SAE 960230, pp. 11-24, 1996. [29] C. Anderson and E. Pettit, 'The Effects of APU Characteristics on the Design of Hybrid Control Strategies for Hybrid Electric Vehicles,' SAE 950493, pp. 65-71, 1995. [30] J. H. Cheng, C. Y. Yu, and V. Hsu, 'Energy Management Algorithm for a Hybrid Fuel Cells Scooter,' Mechanical Engineering, National Taiwan University, 2009. [31] N. Jalil, N. A. Kheir, and M. Salman, 'A Rule-Based Energy Management Strategy for a Series Hybrid Vehicle,' Proceedings of the American Control Conference Albuquerque, New Mexico, 1997. [32] S. Barsali, C. Miulli, and A. Possenti, 'A Control Strategy to Minimize Fuel Consumption of Series Hybrid Electric Vehicles,' IEEE Transactions on Energy Conversion, Vol. 19, No. 1, 2004. [33] Z. Wang, W. Li, and Y. Xu, 'A Novel Power Control Strategy of Series Hybrid Electric Vehicle,' Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego, CA, USA, 2007. [34] 李喬婷, '複合電動車輛能量管理,' 碩士論文, 機械工程學系, 國立台灣大學, 2006. [35] S. D. Cairano, W. Liang, I. V. Kolmanovsky, M. L. Kuang, and A. M. Phillips, 'Engine Power Smoothing Energy Management Strategy for a Series Hybrid Electric Vehiclee,' American Control Conference on O'Farrell Street, San Francisco, CA, USA, 2011. [36] T. Dong, F. Zhao, J. Li, Q. Jin, and Y. You, 'Design Method and Control Optimization of an Extended Range Electric Vehicle,' State Key Laboratory of Automotive Simulation and Control, Jilin University, Geely Automobile Institude, 2011. [37] M. Bhatia, O. Tisler, N. Panchal, M. Ozcan, B. Seaton, and A. Emadi, 'A Simulation Study of Hybrid Electric Hummer H3 Effects of Drive Train Hybridization on Performanceand Fuel Economy,' Grainger Power Electronics and Motor Drives Laboratory, ICAAS Illinois Institute of Technology, Chicago, USA, 2005. [38] http://www.autonet.com.tw/. [39] http://case.ntu.edu.tw/hs/wordpress/?p=5154. [40] http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=2115. [41] 孫明沖, 郝双輝, 劉吉柱, and 宋益明, '基於JMAG的永磁電機退磁分析,' CDAJ-China 中國用戶論文集, 2010. [42] http://blog.mrbattery.com.tw/?p=27. [43] http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1757. [44] http://engineguarder.weebly.com/. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61682 | - |
| dc.description.abstract | 本研究以Power follower為基礎,依據電池系統的SOC修正增程發電系統之發電量,並利用當下的目標發電功率與實際發電功率之差值作為決定功率變化率的關鍵參數,對增程發電系統發電功率之變化率進行動態限制。其中,SOC修正發電量使得SOC值能維持在理想值附近,降低SOC Swing;動態限制發電功率變化率使車輛在正常操作的情形下有較高的發電效率,緊急加速與煞車時又能避免電池系統的電流過大,讓車輛在達到高效率的油耗表現同時,亦能提升電池系統的使用壽命。本研究透過ADVISOR對控制策略進行模擬與分析,先以歐洲新制的行車規範(NEDC)進行標準Driving cycle下的模擬,並與其他控制策略進行比較後,再接著進行都市中急遽加速與煞車、定速爬坡,以及高速行駛山路等特殊的Driving cycle的模擬,分析控制策略在不同行駛條件下的表現。最後再探討系統衰退後對控制策略表現所造成之影響,分析控制策略於衰退的系統中是否仍然能夠達到高燃油效率以及降低電池系統電流的效果。 | zh_TW |
| dc.description.abstract | In this research, the SOC of the battery system is applied to amend the power that the generator need to produce, helping keep the SOC of the battery system close to the ideal value and reduce the SOC swing; the difference between the needed power and the real power of the generator is used to dynamically limit the generated power change rate, keeping the power efficiency high at normal driving situation and avoiding the battery current from overloading when accelerating and decelerating rapidly. By using this method, the oil efficiency and the battery life can be improved. This research uses ADVISOR to simulate the performance of the SHEV system at NEDC cycle, compares with other control strategies, and simulates and analyzes the performance under rapid accelerating and decelerating, constant speed climbing, and driving on mountain road at high speed. Finally, this research discusses and simulates the influence of system aging on the performance of the control strategy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:09:28Z (GMT). No. of bitstreams: 1 ntu-102-R00522511-1.pdf: 5111047 bytes, checksum: 4fbb4e3fff3d98291eae87288b222997 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 油電混合動力車之介紹 4 1.3.1 串聯式油電混合動力車 4 1.3.2 並聯式油電混合動力車 8 1.4 研究方法 14 1.5 本文架構 17 第二章 文獻回顧 19 2.1 電池系統之介紹 19 2.1.1 市售各類電池之比較 19 2.1.2 電池系統老化相關之研究 21 2.2 發電控制策略 25 2.2.1 以Thermostat(定功率發電)為本的發電控制方式 25 2.2.2 以Power follower為本的發電控制方式 28 2.3 小結 31 第三章 ADVISOR車輛模擬軟體介紹 32 3.1 ADVISOR之基本介紹 32 3.2 SIMULINK全車系統模型 33 3.3 M-FILE元件特性模型 35 3.4 DRIVING CYCLE與參數初始值設定 38 3.5 模擬結果輸出 41 3.6 ADVISOR程式之模擬流程 44 3.7 小結 46 第四章 MPV_EVRE_V01模型建立與驗證 47 4.1 MPV_EVRE_V01模型建立 47 4.1.1 MPV_EVRE_V01之Simulink全車系統模型 47 4.1.2 MPV_EVRE_V01之引擎M-file 48 4.1.3 MPV_EVRE_V01發電機之M-file 52 4.1.4 MPV_EVRE_V01之驅動馬達M-file 56 4.1.5 MPV_EVRE_V01之電池系統M-file 59 4.1.6 MPV_EVRE_V01之車身與車輪阻力M-file 62 4.2 MPV_EVRE_V01之模型準確性驗證 64 4.2.1 發電控制策略 64 4.2.2 Driving cycle與模擬參數之初始值設定 66 4.2.3 模擬與實車測試結果比較 67 4.3 小結 71 第五章 以SOC修正發電量暨動態限制增程發電功率變化率之控制策略 72 5.1 控制策略之理論基礎 72 5.1.1 以電池系統SOC修正發電量 73 5.1.2 動態限制增程發電系統功率變化率 75 5.2 ADVISOR控制方塊圖之建立 78 5.3 控制參數調校與模擬結果 81 5.4 與既有控制策略的比較與分析 84 5.5 特殊行駛狀況下之控制成果分析 89 5.6 小結 96 第六章 系統衰退之影響與分析 97 6.1 系統主要元件之衰退問題探討 97 6.2 引擎衰退影響控制策略表現之敏感度分析 99 6.3 小結 104 第七章 總結與未來方向 105 7.1 研究結論 105 7.2 未來研究方向建議 107 參考文獻 108 | |
| dc.language.iso | zh-TW | |
| dc.subject | 增程發電 | zh_TW |
| dc.subject | ADVISOR | zh_TW |
| dc.subject | 控制策略 | zh_TW |
| dc.subject | 能量管理 | zh_TW |
| dc.subject | 混合動力車 | zh_TW |
| dc.subject | hybrid electric vehicle | en |
| dc.subject | extended-range | en |
| dc.subject | energy management | en |
| dc.subject | ADVISOR | en |
| dc.subject | control strategy | en |
| dc.title | 串聯式油電混合動力車能量管理策略之研究 | zh_TW |
| dc.title | Research of Energy Management Strategy Applied to Series Hybrid Electric Vehicles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉霆(Ting Liu),呂百修(Pai-Hsiu Lu) | |
| dc.subject.keyword | 混合動力車,增程發電,能量管理,ADVISOR,控制策略, | zh_TW |
| dc.subject.keyword | hybrid electric vehicle,extended-range,energy management,ADVISOR,control strategy, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
