請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Zen-Hao Liu | en |
| dc.contributor.author | 劉人豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:08:50Z | - |
| dc.date.available | 2018-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-01 | |
| dc.identifier.citation | [1] Kandel R, Roberts S, Urban JP. Tissue engineering and the intervertebral disc: the
challenges. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2008;17 Suppl 4:480-91. [2] Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. The Journal of clinical investigation. 1996;98:996-1003. [3] Raghavan SS, Woon CY, Kraus A, Megerle K, Choi MS, Pridgen BC, et al. Human Flexor Tendon Tissue Engineering: Decellularization of Human Flexor Tendons Reduces Immunogenicity In Vivo. Tissue engineering Part A. 2011. [4] Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine. 2003;28:446-54; discussion 53. [5] Chang G, Kim HJ, Kaplan D, Vunjak-Novakovic G, Kandel R. Porous silk scaffolds can be used for tissue engineering annulus fibrosus. European Spine Journal. 2007;16:1848-57. [6] Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, et al. Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine. 2006;31:742-54. [7] Costi JJ, Freeman BJ, Elliott DM. Intervertebral disc properties: challenges for biodevices. Expert review of medical devices. 2011;8:357-76. [8] Bron JL, Helder MN, Meisel HJ, Van Royen BJ, Smit TH. Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2009;18:301-13. [9] Masuda K, Lotz JC. New challenges for intervertebral disc treatment using regenerative medicine. Tissue engineering Part B, Reviews. 2010;16:147-58. [10] Korecki CL, Costi JJ, Iatridis JC. Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine. 2008;33:235-41. [11] Elliott DM, Yerramalli CS, Beckstein JC, Boxberger JI, Johannessen W, Vresilovic EJ. The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine. 2008;33:588-96. 49 [12] Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675-83. [13] Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233-43. [14] Suto K, Urabe K, Naruse K, Uchida K, Matsuura T, Mikuni-Takagaki Y, et al. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell and tissue banking. 2010. [15] Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, et al. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2011;29:1193-8. [16] Huang H, Zhang J, Sun K, Zhang X, Tian S. Effects of repetitive multiple freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis and flexor pollicis longus tendons. Clin Biomech (Bristol, Avon). 2011;26:419-23. [17] Vavken P, Joshi S, Murray MM. TRITON-X is most effective among three decellularization agents for ACL tissue engineering. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2009;27:1612-8. [18] Deeken CR, White AK, Bachman SL, Ramshaw BJ, Cleveland DS, Loy TS, et al. Method of preparing a decellularized porcine tendon using tributyl phosphate. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2011;96B:199-206. [19] Osti OL, Vernon-Roberts B, Fraser RD. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine. 1990;15:762-7. [20] Fraser RD, Osti OL, Vernon-Roberts B. Intervertebral disc degeneration. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 1993;1:205-13. [21] Chiang CJ, Cheng CK, Sun JS, Liao CJ, Wang YH, Tsuang YH. The effect of a new anular repair after discectomy in intervertebral disc degeneration: an experimental study using a porcine spine model. Spine. 2011;36:761-9. [22] Kheir E, Stapleton T, Shaw D, Jin Z, Fisher J, Ingham E. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. Journal of biomedical materials research Part A. 2011;99:283-94. [23] Enobakhare BO, Bader DL, Lee DA. Quantification of Sulfated Glycosaminoglycans in Chondrocyte/Alginate Cultures, by Use of 50 1,9-Dimethylmethylene Blue. Analytical Biochemistry. 1996;243:189-91. [24] Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et biophysica acta. 1986;883:173-7. [25] Giannini S, Buda R, Di Caprio F, Agati P, Bigi A, De Pasquale V, et al. Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. International orthopaedics. 2008;32:145-51. [26] Huber M, Trattnig S, Lintner F. Anatomy, biochemistry, and physiology of articular cartilage. Investigative radiology. 2000;35:573-80. [27] Pickard J, Ingham E, Egan J, Fisher J. Investigation into the effect of proteoglycan molecules on the tribological properties of cartilage joint tissues. Proceedings of the Institution of Mechanical Engineers Part H, Journal of engineering in medicine. 1998;212:177-82. [28] Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30:1482-91. [29] Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104-7. [30] Cartmell JS, Dunn MG. Effect of chemical treatments on tendon cellularity and mechanical properties. Journal of biomedical materials research. 2000;49:134-40. [31] Galili U. The alpha-Gal epitope (Galalpha1-3Galbeta1-4GlcNAc-R) in xenotransplantation. Biochimie. 2001;83:557-63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61662 | - |
| dc.description.abstract | 摘要
超過百分之八十的成年人有下背疼痛的經驗,造成下背痛的原因很多, 有越來越多證據顯示下背痛與椎間盤退化有相關性,此外纖維環的破裂、椎間盤 突出也是幾個常見的原因。治療椎間盤的退化又分為保守療法及手術治療。當採 用椎間盤切除術時,手術過程會對纖維環造成破壞,而目前對修復椎間盤並無一 個良好的方法。本研究的目的是希望開發出以豬的纖維環去細胞化應用在脊椎纖 維環的修復。雖然自體移植和異體移植是比較不容易造成免疫反應的移植方式, 但自體移植來源有限且數量往往不敷使用,而異體移植數量依然有限、且會有疾 病傳染及免疫排斥的問題,因此採用異種移植。 異種移植易造成嚴重的免疫,因此希望透過去細胞化有效降低纖維環內細胞 的數量,而只保留其組織架構。去細胞化的過程先採用物理凍融的方法,接著採 用化學方法,以0.1%的SDS(一種常用來溶解細胞及核膜的洗滌劑)。並以脫水試 驗去判斷是否符合臨床應用的需求。組織切片染色有H&E、Picrosirius Red、Alcian Blue 三種。同時以生化評估方法去了解DNA 含量、GAG 含量、Collagen 含量。 並以拉伸測試去測試機械性質。將纖維環和3T3 共培養,最後再以MTS 測試去 了解生物相容性。 六次freeze-thaw 去細胞化的結果優於三次,因此採用六次freeze-thaw 作為 製備過程。DNA 含量下降86%,GAG 含量下降15.9%,Collagen 處理前後並無 明顯差異。MTS 的結果去細胞化的纖維環具有良好相容性。機械強度在剛性與 楊氏係數也無明顯差異。雖然埋入老鼠體內仍會產生免疫反應的問題,但綜合以 上結果,本實驗製備一個去細胞化的纖維環,將此支架應用於修復椎間盤纖維環 上具有發展潛力。 | zh_TW |
| dc.description.abstract | Abstract
Low back pain is the common civil disease in the recent decades, and more than 80% of adult people are persecuted by low back pain. There are many factors that cause low back pain, and the degeneration of intervertebral disc may be the major relational factor. Besides, rupture of annulus fibrosus and herniated intervertebral disc (HIVD) may also the common aetiologies of low back pain. To treat the degeneration of intervertebral disc, there are mainly two therapeutics including conservative therapy and surgical therapy. The process of discectomy may cause the damage of spinal annulus fibrosus, and the repair of the annulus fibrosus is always a big challenge of the surgeons. The objective purpose of this study is to prepare a implant of annulus fibrosus made by porcine lumber disc. Because of the shortage donated source of allograft implant, development of xenograft implant may be the tendency of annulus fibrosus repair associated tissue engineering. Because xenograft always cause serious immunological rejection or infection, decellularization of annulus fiber may be practiced by physical freeze-thaw and chemical method to minimize cell content in implant tissue to prevent immunological reaction. In this study, porcine annulus fibrosus after freeze-thaw treatment were treated with 0.1% SDS solution to make cell lysed and washed out the cell lysate. Subsequently, histological section with H&E stain, Picrosirius Red stain, and Alcian Blue stain were used to observe the morphology, and biochemical assays were performed to identify the phenotype of treated annulus fiber. The results demonstrated that the porcine annulus fibrosus treated with six-time freeze-thaw performed better condition than three-time freeze-thaw groups. The DNA content of decellularized VII tissue was 86% less than fresh tissues, and the GAG content of decellularized tissue was 15.9% less than fresh tissues. Collagen content were no significant differences with fresh tissues. MTS assay showed that decellularized annulus fibrosus were non-toxic to normal cells. It demonstrated the biocompatibility of the decellularized annulus fibrosus. Stiffness and Young’s modulus by mechanical property test also showed that there were no significant differences between treated and fresh annulus fibrosus. Although there was still immunological response when the decellularized annulus fibrosus implanted subcutaneous in rat for a long period of time, the decellularized method applied for preparing the xenograft implant of annulus fibrosus repair in this study may be potential in clinical repair of intervertebral disc. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:08:50Z (GMT). No. of bitstreams: 1 ntu-102-R99548038-1.pdf: 3760157 bytes, checksum: 407bd0f4dc5d40becc8a6d797fc41605 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
目錄................................................................................................................................ I 圖目錄........................................................................................................................... III 表目錄...........................................................................................................................IV 摘要...............................................................................................................................V Abstract .........................................................................................................................VI 第一章 序論.................................................................................................................. 1 1.1 脊椎.................................................................................................................. 1 1.2 椎間盤.............................................................................................................. 1 1.3 椎間盤退化症.................................................................................................. 2 1.4 椎間盤退化症的治療...................................................................................... 3 1.4.1 椎間盤退化症保守療法............................................................................... 3 1.4.2 椎間盤退化症手術治療............................................................................... 3 1.5 常見的移植方式.............................................................................................. 4 1.6 組織工程.......................................................................................................... 5 1.6.1 棚架(scaffold) ............................................................................................... 6 1.6.2 細胞(cell) ...................................................................................................... 6 1.6.3 生長訊息(signal) .......................................................................................... 7 1.7 纖維環的修復.................................................................................................. 7 1.8 去細胞化.......................................................................................................... 8 第二章 研究動機與目的............................................................................................ 10 第三章 實驗材料與方法............................................................................................ 12 3.1 實驗藥品........................................................................................................ 12 3.2 實驗儀器........................................................................................................ 14 3.3 纖維環(Anulus Fibrosus)之取得................................................................... 15 3.4 去細胞化(decellulazation) ............................................................................. 15 3.4.1 以Freeze-Thaw 的方法去細胞 ................................................................. 15 3.4.2 以不同的decellularization agent 去細胞 .................................................. 16 3.5 脫水試驗........................................................................................................ 17 3.6 動物實驗........................................................................................................ 18 3.7 掃描式電子顯微鏡觀測................................................................................ 19 3.8 石蠟組織切片................................................................................................ 19 3.9 蘇木紫-伊紅染色(H&E) ............................................................................. 19 3.10 Alcian Blue Stain ......................................................................................... 20 3.11 Picrosirius Red Stain .................................................................................... 21 3.12 膠原蛋白的定量:Hydroxyproline Assay ................................................. 21 II 3.13 GAG assay ................................................................................................... 22 3.14 DNA assay ................................................................................................... 23 3.15 紫外光吸光值分析...................................................................................... 24 3.16 細胞活性測試.............................................................................................. 25 3.16.1 NIH/3T3 繼代培養 ........................................................................... 25 3.16.2 MTS 測試 ......................................................................................... 26 3.17 Tensile Test ................................................................................................... 26 第四章 結果與討論.................................................................................................... 28 4.1 去細胞化的結果............................................................................................ 28 4.2 脫水試驗........................................................................................................ 32 4.3 去細胞前後纖維環組織切片分析................................................................ 34 4.4 去細胞前後纖維環之Hydroxyproline assay ............................................... 37 4.5 去細胞前後纖維環之GAG assay ............................................................... 38 4.6 去細胞前後纖維環之DNA 含量檢測 ........................................................ 39 4.7 去細胞化前後的纖維環之生物相容性測試................................................ 40 4.8 去細胞前後纖維環之機械性質.................................................................... 41 4.9 動物試驗........................................................................................................ 43 第五章 結論.............................................................................................................. 47 第六章 參考文獻........................................................................................................ 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 支架 | zh_TW |
| dc.subject | 去細胞化 | zh_TW |
| dc.subject | 纖維環 | zh_TW |
| dc.subject | scaffold | en |
| dc.subject | decellularization | en |
| dc.subject | annulus fibrosus | en |
| dc.title | 以去細胞技術製備脊椎纖維環支架應用於脊椎椎間盤修復 | zh_TW |
| dc.title | The Use of Decellularization Technique to Prepare Spinal Annulus Fibrosus Scaffold in Repair of Intervertebral Disc | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文(Tze-Wen Chung),許馨云(HSIN-YUN Hsu),黃意真(Yi-Cheng Huang) | |
| dc.subject.keyword | 纖維環,去細胞化,支架, | zh_TW |
| dc.subject.keyword | annulus fibrosus,decellularization,scaffold, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
