請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61648
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林仁混(Jen-Kun Lin) | |
dc.contributor.author | Zheng-Hui Liu | en |
dc.contributor.author | 劉政輝 | zh_TW |
dc.date.accessioned | 2021-06-16T13:08:24Z | - |
dc.date.available | 2013-09-24 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-01 | |
dc.identifier.citation | 1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet, 2005,365(9468):1415–1428.
2. Joslin EP. The prevention of diabetes mellitus. JAMA, 1921, 76:79-84. 3. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12):1595-1607. 4. Katzmarzyk, P.T. The metabolic syndrome: an introduction. Appl Nutr Metab, 2007, 32(1):1-3. 5. Shoelson, S.E. Herrero, L. & Naaz, A. Obesity, inflammation, and insulin resistance. Gastroenterology, 2007, 132(6): 2169-2180. 6. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 2011, 378(9785):31–40. 7. Saito T, Abe D, Sekiya K. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2007, 357(2):371-376. 8. Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab. 2001, 280(6):E827-E847. 9. Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab. 2004, 89(2):463-478. 10. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kadowaki T. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest. 1998, 101(6):1354-1361. 11. Tripathi BK, Srivastava, AK. Diabetes mellitus: Complications and therapeutics. Med Sci Monit, 2006, 12: RA130–147. 12. Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R. Molecular mechanism of insulin resistance and obesity. Exp Biol Med. 2003, 228(10):1111-1117. 13. Boden G. Role of Fatty Acids in the Pathogenesis of Insulin Resistance and NIDDM. Diabetes, 1997, 46(1):3-10. 14. Boden G, Chen X, Capulong E Mozzoli M. Effect of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes, 2001, 50(4):810-816. 15. Kuhlmann J, Neumann-Haefelin C, Belz U, Kalisch J, Juretschke H P, Stein M, Kleinschmidt E, Kramer W, Herling AW. Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes, 2003, 52(1):138-144. 16. Perseghin G, Petersen K, Shulman GI. Cellular mechanism of inslin resistance: potential links with inflammation. Int J Obs Relat Metab Disord, 2003, 27 Suppl 3:S6-S11. 17. Kim, J.B. & Spiegelman, B.M. ADD1/SREBP1 promotes adipocyte differenciation and gene expression linked to fatty acid metabolism. Genes Dev, 1996, 10(9):1096-1107. 18. Cai, H. E. Reports of the treatment of diabetes by tea with integrated traditional Chinese and Western medicine. Tea Research Bulletin, 1979, 11(2), 58-59. 19. Lee KW, Lee HJ, Lee CY. Antioxidant activity of black tea vs. green tea. J Nutr, 2002, 132(4):785. 20. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med, 1992, 21(3):334-350. 21. Chen X, Ye Y, Cheng H, Jiang Y, Wu Y. Thermal effects on the stability and antioxidant activity of an acid polysaccharide conjugate derived from green tea. J Agric Food Chem, 57(13):5795-5798. 22. Chen H, Zhang M, Qu Z, Xie B. Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate. J Agric Food Chem, 23. Zhou X, Wang D, Sun P, Bucheli P, Li L, Hou Y, Wang J. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice. J Agric Food Chem, 2007, 55(14):5523-5528. 24. SP Nie, MY Xie. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll, 2011, 25(2):144-149. 25. Shin DW, Kim SN, Lee SM, Lee W, Song MJ, Park SM, Lee TR, Baik JH, Kim HK, Hong JH, Noh M. (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem Pharmacol, 2009, 77(1):125-133. 26. Saito T, Abe D, Sekiya K. Flavanone exhibits PPARgamma ligand activity and enhances differentiation of 3T3-L1 adipocytes. Biochem Biophys Res Commun, 2009, 380(2):281-285. 27. Haridas Nidhina PA, Poulose N, Gopalakrishnapillai A. Vanillin induces adipocyte differentiation in 3T3-L1 cells by activating extracellular signal regulated kinase 42/44. Life Sci, 2011, 88(15-16):675-680. 28. Zhang Y, Huang C, Sheng X, Gong Z, Zang YQ. Lecithin promotes adipocyte differentiation and hepatic lipid accumulation. Int J Mol Med, 2009, 23(4):449-454. 29. Park SY, Lee JH, Kim KY, Kim EK, Yun SJ, Kim CD, Lee WS, Hong KW. Cilostazol increases 3T3-L1 preadipocyte differentiation with improved glucose uptake associated with activation of peroxisome proliferator-activated receptor-gamma transcription. Atherosclerosis, 2008, 201(2):258-265. 30. Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M. Emodin with PPARgamma ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochem Biophys Res Commun, 2007, 353(2):225-230. 31. Saito T, Abe D, Sekiya K. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem Biophys Res Commun, 2007, 357(2):371-376. 32. Saito T, Abe D, Sekiya K. Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARgamma2. Biochem Biophys Res Commun, 2008, 372(4):835-839. 33. Hassan M, El Yazidi C, Landrier JF, Lairon D, Margotat A, Amiot MJ. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem Biophys Res Commun, 2007, 361(1):208-213. 34. Choi SS, Cha BY, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT. Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Life Sci, 2009, 84(25-26):908-914. 35. Murase Y, Kobayashi J, Nohara A, Asano A, Yamaaki N, Suzuki K, Sato H, Mabuchi H. Raloxifene promotes adipocyte differentiation of 3T3-L1 cells. Eur J Pharmacol, 2006, 538(1-3):1-4. 36. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr, 2001, 131(9):2242-2247. 37. Joo JI, Kim DH, Yun JW. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation. Phytother Res, 2011, 24(11):1592-9. 38. Kim D, Park KK, Lee SK, Lee SE, Hwang JK. Cornus kousa F.Buerger ex Miquel increases glucose uptake through activation of peroxisome proliferator-activated receptor γ and insulin sensitization. J Ethnopharmacol, 2011, 133(2):803-809. 39. Charbonnel B, Dormandy J, Erdmann E, Massi-Benedetti M, Skene A; PROactive Study Group. The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care, 2004, 27(7):1647-1653. 40. Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N. Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab, 2008, 10(12):1221-1238. 41. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelliere R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA, 2008, 299(13):1561-1573. 42. Roehr B. FDA committee urges tight restrictions on rosiglitazone. BMJ, 2010, 341, 3862. 43. Anand A, Chada K. In vivo modulation of Hmgic reduces obesity. Nat Genet, 2000, 24(4):377-380. 44. Yang X, Jansson PA, Nagaev I, Jack MM, Carvalho E, Sunnerhagen KS, Cam MC, Cushman SW, Smith U. Evidence of impaired adipogenesis in insulin resistance. Biochem Biophys Res Commun, 2004, 317(4):1045-1051. 45. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 2001, 50(9):2094-2099. 46. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev, 1998, 78(3):783-809. 47. Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci, 2004, 25(6):331-336. 48. Wu Z, Xie Y, Morrison RF, Bucher NL, Farmer SR. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest, 1998, 101(1):22-32. 49. Fernyhough ME, Okine E, Hausman G, Vierck JL, Dodson MV. PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest Anim Endocrinol, 2007, 33(4):367-378. 50. Liao W, Nguyen MT, Yoshizaki T, Favelyukis S, Patsouris D, Imamura T, Verma IM, Olefsky JM. Suppression of PPAR-gamma attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab, 2007, 293(1):E219-27. 51. Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res, 2005, 46(7):1369-1379. 52. Yang WS, Chuang LM. Human genetics of adiponectin in the metabolic syndrome. J Mol Med, 2006, 84(2):112-21. 53. Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol, 1996, 270(2 Pt 1):E299-304. 54. Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem, 2002, 277(28):25226-25232. 55. Hunnicutt JW, Hardy RW, Williford J, McDonald JM. Saturated fatty acid-induced insulin resistance in rat adipocytes. Diabetes, 1994, 43(4):540-545. 56. Van Epps-Fung M, Williford J, Wells A, Hardy RW. Fatty acid-induced insulin resistance in adipocytes. Endocrinology, 1997, 138(10):4338-4345. 57. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol, 2004, 18(8):2024-2034. 58. McCall KD, Holliday D, Dickerson E, Wallace B, Schwartz AL, Schwartz C, Lewis CJ, Kohn LD, Schwartz FL. Phenylmethimazole blocks palmitate-mediated induction of inflammatory cytokine pathways in 3T3L1 adipocytes and RAW 264.7 macrophages. J Endocrinol, 2010, 207(3):343-353. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61648 | - |
dc.description.abstract | 糖尿病為一種代謝症候群的疾病主要可分為第一型及第二型,其中第二型是由胰島素阻抗而造成的高血糖且較為常見約佔90~95%,因此葡萄糖的代謝與恆定對於治療糖尿病是很重要的。
普洱茶是一種在雲南生產全發酵茶,根據先前的研究指出普洱茶多醣在活體實驗中具有降血糖的功能,但是在細胞內的分子機制仍不清楚。本研究將茶多醣模擬成抗糖尿病藥物thiazolidinedione (TZD)的作用並研究其可能的作用機制,以3T3-L1脂肪細胞來探討茶多醣是否具有促進脂肪細胞分化及葡萄糖攝取作用。實驗中發現普洱茶多醣具有促進前驅脂肪細胞分化、三酸甘油酯累積及葡萄糖攝取之作用。普洱茶多醣可增加PPARγ和GLUT4的蛋白表現。分化的脂肪細胞具有較好的胰島素敏感度且分泌較多的adiponectin促使更多的葡萄糖進入細胞內。 另外由棕櫚酸誘導脂肪細胞產生胰島素阻抗的實驗中發現普洱茶多醣可增加葡萄糖攝取及脂肪堆積,並且磷酸化的Akt和AMPK也有增加的情形。綜合以上結果顯示,普洱茶多醣能夠藉由刺激PPARγ和GLUT4的蛋白表現來促進脂肪細胞分化及葡萄糖攝取,因此普洱茶多醣可能具有改善胰島素阻抗及降血糖的作用,並發揮抗糖尿病之作用。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:08:24Z (GMT). No. of bitstreams: 1 ntu-102-R00442014-1.pdf: 11019641 bytes, checksum: efbb629b1c706cdbe2aa88aa9663d61a (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝………………………………………………………………………i
中文摘要…………………………………………………………………ii Abstract………………………………………………………………….iii Table of contant………………………………………………………….v List of figures……………………………………………………………vi Abbreviations…………………………………………………………...vii Introduction………………………………………………………………1 Materials and Methods…………………………………………………...7 Results…………………………………………………………….…….14 Discussion……………………………………………………….……...20 References…………………………………………………….………...24 Figures………………………………………………………….……….33 | |
dc.language.iso | en | |
dc.title | 普洱茶多醣促進3T3-L1脂肪細胞分化及葡萄糖攝取之機制探討 | zh_TW |
dc.title | Pu-erh tea polysaccharides stimulate adipogenesis and glucose uptake in 3T3-L1 adipocyte | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭水銀(Shoei-Yn Shiau),梁有志(Yu-Chih Liang),鍾景光(Jing-Gung Chung),李宣佑(Shuan-Yow Li) | |
dc.subject.keyword | 普洱茶多醣,脂肪細胞,脂肪細胞分化,葡萄糖攝取,糖尿病,胰島素阻抗, | zh_TW |
dc.subject.keyword | Pu-erh tea polysaccharides,adipocyte,adipogenesis,glucose uptake,diabetes,insulin resistance, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-01 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 10.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。