Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61644
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝銘鈞(Ming-Jium Shieh)
dc.contributor.authorChien-Yu Linen
dc.contributor.author林建酉zh_TW
dc.date.accessioned2021-06-16T13:08:17Z-
dc.date.available2015-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-01
dc.identifier.citation[1] Iijima S. Helical Microtubules of Graphitic Carbon. Nature. 1991;354:56-8.
[2] Adeli M, Soleyman R, Beiranvand Z, Madani F. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube-polymer interactions. Chemical Society reviews. 2013.
[3] Akhter S, Ahmad MZ, Ramzani F, Singh A, Ahmad I, Rahman Z, et al. Nanomedicines as cancer therapeutics: Current status. Current cancer drug targets. 2013.
[4] Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules. 2011;12:3381-93.
[5] Datir SR, Das M, Singh RP, Jain S. Hyaluronate tethered, 'smart' multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjugate chemistry. 2012;23:2201-13.
[6] Elhissi AM, Ahmed W, Hassan IU, Dhanak VR, D'Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. Journal of drug delivery. 2012;2012:837327.
[7] Hadidi N, Kobarfard F, Nafissi-Varcheh N, Aboofazeli R. PEGylated Single-Walled Carbon Nanotubes as Nanocarriers for Cyclosporin A Delivery. AAPS PharmSciTech. 2013.
[8] Huang H, Yuan Q, Shah JS, Misra RD. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Advanced drug delivery reviews. 2011;63:1332-9.
[9] Karchemski F, Zucker D, Barenholz Y, Regev O. Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. Journal of controlled release : official journal of the Controlled Release Society. 2012;160:339-45.
[10] Karmakar A, Iancu C, Bartos DM, Mahmood MW, Ghosh A, Xu Y, et al. Raman spectroscopy as a detection and analysis tool for in vitro specific targeting of pancreatic cancer cells by EGF-conjugated, single-walled carbon nanotubes. Journal of applied toxicology : JAT. 2012;32:365-75.
[11] Posadas I, Guerra FJ, Cena V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine. 2010;5:1219-36.
[12] Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012;33:3324-33.
[13] Servant A, Methven L, Williams RP, Kostarelos K. Electroresponsive Polymer-Carbon Nanotube Hydrogel Hybrids for Pulsatile Drug Delivery In Vivo. Advanced healthcare materials. 2012.
[14] Villa CH, Dao T, Ahearn I, Fehrenbacher N, Casey E, Rey DA, et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS nano. 2011;5:5300-11.
[15] Wen S, Liu H, Cai H, Shen M, Shi X. Targeted and pH-Responsive Delivery of Doxorubicin to Cancer Cells Using Multifunctional Dendrimer-Modified Multi-Walled Carbon Nanotubes. Advanced healthcare materials. 2013.
[16] Wu L, Man C, Wang H, Lu X, Ma Q, Cai Y, et al. PEGylated multi-walled carbon nanotubes for encapsulation and sustained release of oxaliplatin. Pharmaceutical research. 2013;30:412-23.
[17] Zhang M, Yamaguchi T, Iijima S, Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine : nanotechnology, biology, and medicine. 2013.
[18] Zhang M, Zhou X, Iijima S, Yudasaka M. Small-sized carbon nanohorns enabling cellular uptake control. Small. 2012;8:2524-31.
[19] Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS nano. 2011;5:493-9.
[20] Ajima K, Murakami T, Mizoguchi Y, Tsuchida K, Ichihashi T, Iijima S, et al. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS nano. 2008;2:2057-64.
[21] Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S. Carbon nanohorns as anticancer drug carriers. Molecular pharmaceutics. 2005;2:475-80.
[22] Guven A, Rusakova IA, Lewis MT, Wilson LJ. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials. 2012;33:1455-61.
[23] Kang B, Li J, Chang S, Dai M, Ren C, Dai Y, et al. Subcellular tracking of drug release from carbon nanotube vehicles in living cells. Small. 2012;8:777-82.
[24] Moghimi SM, Andersen AJ, Hashemi SH, Lettiero B, Ahmadvand D, Hunter AC, et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. Journal of controlled release : official journal of the Controlled Release Society. 2010;146:175-81.
[25] Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chemical communications. 2008:459-61.
[26] Pelley RJ. Oxaliplatin: a new agent for colorectal cancer. Current oncology reports. 2001;3:147-55.
[27] Raymond E, Faivre S, Woynarowski JM, Chaney SG. Oxaliplatin: mechanism of action and antineoplastic activity. Seminars in oncology. 1998;25:4-12.
[28] Schmidt W, Chaney SG. Role of carrier ligand in platinum resistance of human carcinoma cell lines. Cancer research. 1993;53:799-805.
[29] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research. 1986;46:6387-92.
[30] Liu Y, Jiang W, Li S, Cheng ZP, Song D, Zhang XJ, et al. Attachment of magnetic nanoparticles on carbon nanotubes using oleate as an interlinker molecule. Mater Chem Phys. 2009;116:438-41.
[31] Shi D, Cheng JP, Liu F, Zhang XB. Controlling the size and size distribution of magnetite nanoparticles on carbon nanotubes. J Alloy Compd. 2010;502:365-70.
[32] Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:1410-5.
[33] Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37:1379-89.
[34] Lai SM, Hsiao JK, Yu HP, Lu CW, Huang CC, Shieh MJ, et al. Polyethylene glycol-based biocompatible and highly stable superparamagnetic iron oxide nanoclusters for magnetic resonance imaging. J Mater Chem. 2012;22:15160-7.
[35] Chaney SG, Campbell SL, Bassett E, Wu Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Critical reviews in oncology/hematology. 2005;53:3-11.
[36] Jamieson ER, Lippard SJ. Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chemical reviews. 1999;99:2467-98.
[37] Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature nanotechnology. 2007;2:47-52.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61644-
dc.description.abstract近年來科學家致力於將奈米碳管應用於癌症治療上並且已獲得許多重要的學術研究資料。而我的研究主題為製備多壁奈米碳管搭載超順磁性氧化鐵作為化療藥物oxaliplatin之奈米藥物載體並評估其藥物釋放及核磁共振顯影之能力。
  本研究為了使化療藥物oxaliplatin達到延緩釋放的效果,將oxaliplatin封裝於具管狀結構且經功能性修飾的多壁奈米碳管中。其超順磁性和副產物的純化可由氧化鐵/碳管的複合物製備中以熱處理達成,且為了有更好的親水性質與生物可相容性我們進一步的修飾分子量3400,末端為胺基的聚乙二醇。其oxaliplatin在我們的載體上的承載率為40.2%,並且由於修飾聚乙二醇之故,oxa@magmwnts-PEG3.4k具有延緩藥物釋放的能力。在藥物釋放實驗之中,12小時之內只有36.25%的藥物釋出,而在144小時候則為55.48%的平衡釋放率。且我們可由體外實驗中針對大腸直腸癌細胞株HCT116的細胞毒性、細胞凋亡假說、Pt-DNA加成物的定量研究中可進一步驗證延緩藥物釋放的效果。而在體內實驗中對皮下種植腫瘤的SCID品系小鼠,以一周兩次尾靜脈注射方式給予兩個禮拜的oxa@magmwnts-PEG3.4k (5mg/kg)腫瘤抑制療程,我們發現其具有腫瘤生長抑制的效果。此對比於給予臨床化療藥物歐力普Oxalip,治療過程並不會導致小鼠死亡。此外,我們通過分析oxaliplatin和碳管載體的組織分布,驗證這樣新穎的oxa@magmwnts-PEG3.4k是通過增強滲透與滯留效應(EPR Effect)的被動性累積於腫瘤組織內來達到藥物釋放和治療的效果。且由實驗結果我們推論使用奈米藥物載體搭載之化療藥物,其藥物的代謝效率較不受小鼠的個體差異化的影響。並且藉由給予單次注射後觀察不同時間點腫瘤T2影像的衰退情形,確認奈米藥物載體在腫瘤位置的分布情形。
zh_TW
dc.description.abstractResearchers in recent years have put a lot of efforts on the development of carbon nanotube in the field of cancer therapy. In order to achieve the goal of sustained drug release, oxaliplatin was encapsulated into multi-walled carbon nanotubes which were modified by SPIOs and PEGylated for drug delivery. Superparamagnetic property and purifications of iron oxide/MWNTs composites were achieved by annealing treatment during fabrication process; the better hydrophilicity and bio-compatibility were also accomplished subsequently after the modification of the composites with PEG3.4k. Drug content of oxaliplatin in mamgnwts-PEG3.4k is about 40.2%. The oxa@magmwnts-PEG3.4k presented the ability of sustained release that there was only 36.25% of loaded oxaliplatin leaked within 12hrs and 55.48% of them were last over 144hrs. In vitro, the cytotoxicity experiments were further verified by apoptosis assay. Pt-DNA quantification on HCT116 cells showed that the ability of sustained release last to 96hrs. In vivo, oxa@magmwtns-PEG3.4k (10mg/kg) were intravenously injected to subcutaneously seeding tumors of SCID mice suppressed the tumor growth. Moreover, the oxa@magmwnt-PEG3.4k didn’t lead to the lethal of mice during treatment, but Oxalip did. The EPR effect of this novel nanomedicine was verified by investigating the bio-distribution of the drug and carriers, and the potential of magnetic resonance imaging of modified nanotubes was also investigated, too.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:08:17Z (GMT). No. of bitstreams: 1
ntu-102-R00548040-1.pdf: 4251121 bytes, checksum: b8f26de8d665b5ae394529330c68f1c6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書...i
誌謝...ii
中文摘要...v
ABSTRACT...vii
LIST OF FIGURES...ix
CONTENTS...xii
Chapter 1 Introduction...1
Chapter 2 Experimental design and method...5
2.1 Materials...5
2.2 Synthesis experimental method...6
2.2.1 Oxidization and Screening of MWNTs...6
2.2.2 Super paramagnetic iron oxide decoration of MWNTs ...7
2.2.3 PEGylation of magmwnts with PEG3.4k...8
2.2.4 Encapsulation of oxaliplatin within magmwnts and magmwnts-PEG3.4k...9
2.2.5 Combing MWNTs-Carrier with fluorescence marker...10
2.3 Characterization of MWNTs carriers...10
2.3.1 Transmission electron microscopy (TEM)...10
2.3.2 High resolution transmission electron microscopy and Energy dispersive spectrometer (HRTEM/EDS)...11
2.3.3 Fourier transform infrared spectroscopy (FTIR)...11
2.3.4 X-Ray powder diffraction (XRD)...12
2.3.5 Thermogravimetry Analyzer (TGA)...12
2.3.6 Differential Scanning Calorimeter (DSC)...12
2.3.7 Superconducting Quantum Interference Device (SQUID) ...12
2.3.8 Concentration of magmwnts-PEG3.4k...13
Fluorescence and UV-vis-NIR absorbance spectra of carriers ...13
2.3.9 Drug loading of oxaliplatin...13
Atomic absorption spectroscopy (AAS)...13
2.3.10 In vitro MRI...14
2.3.11 Drug release profile...14
2.3.12 Quantitative analysis of PEG on carriers...15
Ninhydrin assay...15
2.4 In vitro experiments...15
2.4.1 Cell line and cell culture...15
2.4.2 In vitro cytotoxicity...16
Trypan blue assay (Dye exclusion assay)...16
Apoptosis assay...17
2.5 Cellular uptake...18
Flow cytometry...18
ELISA detection and BCA protein assay...18
2.6 Prussian blue staining...19
2.7 In vivo experiments...20
2.7.1 In vivo bio-distribution...20
Inductively coupled plasma mass spectrometry (ICP-Ms)...20
Raman...20
2.7.2 In vivo tumor inhibition of nanomedicine...21
2.7.3 In vivo MRI...22
2.8 Statistical methods...22
Chapter 3 Results and discussion...23
3.1 Characterizations of magmwnts-PEG3.4k...23
3.1.1 Size distribution...23
3.1.2 Elimination of side product...23
3.1.3 FTIR spectra and XRD pattern...23
3.1.4 TGA(Thermogravimetry Analyzer)...26
3.1.5 SQUID(Superconducting Quantum Interference Device Magnetometer)...27
3.1.6 MRI image of the serial dilution of magmwnts-PEG3.4k in the PCR Eppendorf Tubes...28
3.1.7 HRTEM/EDS system images...28
3.1.8 H1-NMR spectrum of magmwnts-PEG3.4k...29
3.1.9 Element analysis report...29
3.1.10 Ninhydrin assay...30
3.1.11 Loading rate of oxaliplatin in oxa@magmwnts and oxa@magmwnts-PEG3.4k...30
3.1.12 In vitro drug release profile...31
3.2 In vitro study...32
3.2.1 In vitro cytotoxicity...32
Cytotoxicity of Oxalip...33
Cytotoxicity of magmwnts and magmwnts-PEG3.4k...34
Cytotoxicity of Oxalip, oxa@magmwnts, and oxa@magmwnts-PEG3.4k...34
Apoptosis assay...35
3.2.2 Pt-DNA adducts...36
3.2.3 Cellular uptake of magmwnts-PEG3.4k...38
3.2.4 Prussian blue staining...39
3.3 In vivo study...39
3.3.1 In vivo tumor inhibition...39
3.3.2 Bio-distribution of oxaliplatin...40
3.3.3 Bio-distribution of magmwnts-PEG3.4k...41
3.3.4 In vivo MRI...43
Chapter 4 Conclusion...43
FIGURES...46
REFERENCE...67
dc.language.isoen
dc.subject核磁共振顯影zh_TW
dc.subject多壁奈米碳管zh_TW
dc.subject第三代鉑類化療藥物oxaliplatinzh_TW
dc.subject超順磁性氧化鐵zh_TW
dc.subject增強滲透與滯留效應zh_TW
dc.subject組織分布zh_TW
dc.subjectmulti-walled carbon nanotubeen
dc.subjectMRIen
dc.subjectBio-distributionen
dc.subjectEPR effecten
dc.subjectSPIOsen
dc.subjectoxaliplatinen
dc.title製備多壁奈米碳管搭載超順磁性氧化鐵作為化療藥物Oxaliplatin 之奈米藥物載體並評估其藥物釋放及核磁共振顯影之能力zh_TW
dc.titleOxaliplatin encapsulated in SPIO/MWNTs hybrid for
colon cancer therapy and magnetic resonance imaging
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴秉杉(Ping-Shan Lai),蕭仲凱(Jong-Kai Hsiao),駱駿良(Chun-Liang Lo)
dc.subject.keyword多壁奈米碳管,第三代鉑類化療藥物oxaliplatin,超順磁性氧化鐵,增強滲透與滯留效應,組織分布,核磁共振顯影,zh_TW
dc.subject.keywordmulti-walled carbon nanotube,oxaliplatin,SPIOs,EPR effect,Bio-distribution,MRI,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2013-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved