請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61632完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫(Kai-Wun Yeh) | |
| dc.contributor.author | Yu-Chen Tsang | en |
| dc.contributor.author | 臧友真 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:07:55Z | - |
| dc.date.available | 2018-08-07 | |
| dc.date.copyright | 2013-08-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-01 | |
| dc.identifier.citation | 田中道男、山田真也、五井正憲。(1981,昭和56年春)。オニシジウムの生長と開花 (第1報) Onc. Boissiense,にっいて,園學要旨。pp: 366-367。
李孟惠。(1998)。溫度、光度及肥料濃度對文心蘭花序發育之影響。國立台灣大學園藝研究所碩士論文。 吳佩穎。(2012)。 維他命C與一氧化氮於文心蘭及阿拉伯芥開花過程之協同作用。國立台灣大學植物科學研究所碩士論文。 林于倫。(2008)。電照週期對文心蘭 Gower Ramsey 花序發育及品質之影響. 國立中興大學園藝學系碩士論文。 林智良、朱德民。(1989)。光對作物光合產物分配的影響。科學農業。37(5-6): 140-147。 徐懷恩。(1997)。不同光照、氮源肥料及花梗修剪對文心蘭開花之影響。國立中興大學園藝學系碩士論文。 黃怡菁。(1997)。文心蘭基本生長週期與花期修剪產期調節。高雄區農業專訊。22: 16-17。 黃柏睿。(2011)。文心蘭ascorbate peroxidase 對阿拉伯芥在中高溫生長下對於開花機制的調控功能。國立台灣大學植物科學研究所碩士論文。 張允瓊、李哖。(1999)。文心蘭Gower Ramsey假球莖與花序之生長、型態、與解剖。中國園藝。45: 87-99。 張允瓊。(1996)。溫度、光度及肥料濃度對文心蘭生長與開花之影響。國立台灣大學園藝研究所碩士論文。 許玉妹。(1999)。文心蘭栽培管理及採後處理。國立屏東大學農業推廣委員會編印。pp: 35-38。 蔡佩芬。(2000)。溫度、光度、栽培介質對文心蘭苗生育之影響。國立台灣大學園藝研究所碩士論文。 賴本智。(2001)。文心蘭、蜘蛛蘭、堇花蘭、齒舌蘭及其近緣屬的種源介紹。台灣區花卉發展協會文心蘭專刊。pp: 86-133。 (1998). RHS Orchids 98 [electronic resource], S. Royal Horticultural and C. Orchid Database, eds (Singapore: The Orchid Database Company). Achard, P., Herr, A., Baulcombe, D.C., and Harberd, N.P. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Sci. Signal. 131, 3357-3365. Alexandre, C.M., and Hennig, L. (2008). FLC or not FLC: the other side of vernalization. J. Exp. Bot. 59, 1127-1135. Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., and Marshall, M. (2003). A uniform system for microRNA annotation. RNA 9, 277-279. An, F.-M., Hsiao, S.-R., and Chan, M.-T. (2011). Sequencing-based approaches reveal low ambient temperature-responsive and tissue-specific microRNAs in Phalaenopsis orchid. PLoS ONE 6, e18937. Arikit, S., Zhai, J., and Meyers, B.C. (2013). Biogenesis and function of rice small RNAs from non-coding RNA precursors. Curr. Opin. Plant Biol. 16, 170-179. Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741. Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2, e106. Baumberger, N., and Baulcombe, D. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. U. S. A. 102, 11928-11933. Beauclair, L., Yu, A., and Bouché, N. (2010). microRNA‐directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J. 62, 454-462. Bernier, G., Kinet, J.-M., and Sachs, R.M. (1981). The physiology of flowering. (CRC Press). Blázquez, M.A. (2000). Flower development pathways. J. Cell Sci. 113, 3547-3548. Blázquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168-171. Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11, 113-116. Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Sci. Signal. 303, 2022-2025. Chen, X. (2005). MicroRNA biogenesis and function in plants. FEBS Lett. 579, 5923-5931. Chiou, T.-J., Aung, K., Lin, S.-I., Wu, C.-C., Chiang, S.-F., and Su, C.-l. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412-421. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. Conklin, P.L., Norris, S.R., Wheeler, G.L., Williams, E.H., Smirnoff, N., and Last, R.L. (1999). Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 96, 4198-4203. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., and Turnbull, C. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Sci Signal 316, 1030-1033. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281. Eriksson, S., Böhlenius, H., Moritz, T., and Nilsson, O. (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18, 2172-2181. Fitter, A., and Fitter, R. (2002). Rapid changes in flowering time in British plants. Science 296, 1689-1691. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2-18. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., and Enright, A.J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140-D144. Guo, A.-Y., Zhu, Q.-H., Gu, X., Ge, S., Yang, J., and Luo, J. (2008). Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418, 1-8. Guo, H.-S., Xie, Q., Fei, J.-F., and Chua, N.-H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17, 1376-1386. Hagen, G., and Guilfoyle, T. (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49, 373-385. Hartmann, U., Höhmann, S., Nettesheim, K., Wisman, E., Saedler, H., and Huijser, P. (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21, 351-360. Hew, C.S., and Yong, J.W.H. (1994). Growth and photosynthesis of Oncidium 'Goldiana'. J. Hortic. Sci. 69, 809-819. Hew, C.S., Koh, K.T., and Khoo, G.H. (1998). Pattern of photoassimilate partitioning in pseudobulbous and rhizomatous terrestrial orchids. Environ. Exp. Bot. 40, 93-104. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., and Pease, L.R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59. Jia, X., Wang, W.-X., Ren, L., Chen, Q.-J., Mendu, V., Willcut, B., Dinkins, R., Tang, X., and Tang, G. (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol. Biol. 71, 51-59. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344-347. Jung, J.-H., Seo, Y.-H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.-H., and Park, C.-M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19, 2736-2748. Jung, J.H., Ju, Y., Seo, P.J., Lee, J.H., and Park, C.M. (2012). The SOC1‐SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J. 69, 577-588. Kasajima, I., Ide, Y., Ohkama-Ohtsu, N., Hayashi, H., Yoneyama, T., and Fujiwara, T. (2004). A protocol for rapid DNA extraction from Arabidopsis thaliana for PCR analysis. Plant Mol. Biol. Rep. 22, 49-52. Kim, J.J., Lee, J.H., Kim, W., Jung, H.S., Huijser, P., and Ahn, J.H. (2012). The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol. 159, 461-478. Klein, J., Saedler, H., and Huijser, P. (1996). A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 250, 7-16. Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 521-535. Kotchoni, S.O., Larrimore, K.E., Mukherjee, M., Kempinski, C.F., and Barth, C. (2009). Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol. 149, 803-815. Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597-610. Kurihara, Y., and Watanabe, Y. (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. U. S. A. 101, 12753-12758. Kurihara, Y., Takashi, Y., and Watanabe, Y. (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206-212. Laufs, P., Peaucelle, A., Morin, H., and Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311-4322. Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H. (2010). Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. 38, 3081-3093. Lee, J.H., Lee, J.S., and Ahn, J.H. (2008). Ambient temperature signaling in plants: an emerging field in the regulation of flowering time. J. Plant Biol. 51, 321-326. Lee, J.H., Kim, J.J., and Ahn, J.H. (2012). Role of SEPALLATA3 (SEP3) as a downstream gene of miR156-SPL3-FT circuitry in ambient temperature-responsive flowering. Plant Signal Behav. 7, 1151-1154. Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21, 397-402. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. Liang, G., Yang, F., and Yu, D. (2010). MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 62, 1046-1057. Lin, C.-S., Chen, J.J., Huang, Y.-T., Hsu, C.-T., Lu, H.-C., Chou, M.-L., Chen, L.-C., Ou, C.-I., Liao, D.-C., Yeh, Y.-Y., Chang, S.-B., Shen, S.-C., Wu, F.-H., Shih, M.-C., and Chan, M.-T. (2013). Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families. Plant Mol. Biol. 82, 193-204. Liu, P.P., Montgomery, T.A., Fahlgren, N., Kasschau, K.D., Nonogaki, H., and Carrington, J.C. (2007). Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post‐germination stages. Plant J. 52, 133-146. Liu, Q., Zhang, Y.-C., Wang, C.-Y., Luo, Y.-C., Huang, Q.-J., Chen, S.-Y., Zhou, H., Qu, L.-H., and Chen, Y.-Q. (2009). Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett. 583, 723-728. Long, S.P., and Woodward, F.I. (1988). Plants and temperature. In Cambridge.:[Symp. 42, Soc. exp. Biol.] Company of Biologists, pp. 299-300. Lu, K.-J., Huang, N.-C., Liu, Y.-S., Lu, C.-A., and Yu, T.-S. (2012). Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biol. 9, 653-662. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., and Cobbett, C. (1997). FCA, a Gene Controlling Flowering Time in Arabidopsis, Encodes a Protein Containing RNA-Binding Domains. Cell 89, 737-745. Mallory, A.C., Bartel, D.P., and Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17, 1360-1375. Mallory, A.C., Dugas, D.V., Bartel, D.P., and Bartel, B. (2004). MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14, 1035. Mathieu, J., Yant, L.J., Mürdter, F., Küttner, F., and Schmid, M. (2009). Repression of flowering by the miR172 target SMZ. PLoS Biol. 7, e1000148. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., and Long, C. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5' Terminal Nucleotide. Cell 133, 116-127. Michaels, S.D., and Amasino, R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949-956. Mlotshwa, S., Yang, Z., Kim, Y., and Chen, X. (2006). Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol. Biol. 61, 781-793. Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., and Lee, I. (2003). The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35, 613-623. Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944. Murase, K., Hirano, Y., Sun, T.-p., and Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459-463. Mutasa-Göttgens, E., and Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 60, 1979-1989. Núñez-Elisea, R., and Davenport, T.L. (1994). Flowering of mango trees in containers as influenced by seasonal temperature and water stress. Sci. Hortic. 58, 57-66. Nagae, S., Takamura, T., Goi, M., and Tanaka, M. (1994). Micropropagation of Gerbera in the “Culture Pack”-Rockwool system with sugar-free medium under non-sterile condition. In ISHS Acta Horticulturae 393, pp. 157-164. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J.D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Sci. Signal. 312, 436. Nevin, J.M., and Lovatt, C.J. (1989). Changes in starch and ammonia metabolism during low temperature stress-induced flowering in ‘Hass’ avocado-a preliminary report. In South African Avocado Growers' Association Yearbook, pp. 21-25. Ogawa, K.i., Tasaka, Y., Mino, M., Tanaka, Y., and Iwabuchi, M. (2001). Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol. 42, 524-530. Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257-263. Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., and Poethig, R.S. (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 102, 3691-3696. Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 1484-1495. Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., and Müller, P. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89. Penfield, S. (2008). Temperature perception and signal transduction in plants. New Phytol. 179, 615-628. Pnueli, L., Liang, H., Rozenberg, M., and Mittler, R. (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)‐deficient Arabidopsis plants. Plant J. 34, 187-203. Prigge, M.J., Otsuga, D., Alonso, J.M., Ecker, J.R., Drews, G.N., and Clark, S.E. (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61-76. Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. Bioessays 26, 363-373. Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D. (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290-294. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906. Ren, G., Xie, M., Dou, Y., Zhang, S., Zhang, C., and Yu, B. (2012). Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 109, 12817-12821. Rieu, I., Ruiz‐Rivero, O., Fernandez‐Garcia, N., Griffiths, J., Powers, S.J., Gong, F., Linhartova, T., Eriksson, S., Nilsson, O., and Thomas, S.G. (2008). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 53, 488-504. Rolland, F., Moore, B., and Sheen, J. (2002). Sugar sensing and signaling in plants. Plant Cell 14, S185-S205. Rosenzweig, C., and Parry, M.L. (1994). Potential impact of climate change on world food supply. Nature 367, 133-138. Rubio-Somoza, I., and Weigel, D. (2011). MicroRNA networks and developmental plasticity in plants. Trends Plant Sci. 16, 258-264. Samach, A., and Wigge, P.A. (2005). Ambient temperature perception in plants. Curr. Opin. Plant Biol. 8, 483-486. Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D., and Lohmann, J.U. (2003). Dissection of floral induction pathways using global expression analysis. Development 130, 6001-6012. Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M., and Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8, 517-527. Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 67, 183-195. Scortecci, K., Michaels, S.D., and Amasino, R.M. (2003). Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Mol. Biol. 52, 915-922. Shü, Z.-h., Lin, T.-s., Lai, J.-m., Huang, C.-c., Wang, D.-n., and Pan, H.-h. (2007). The industry and progress review on the cultivation and physiology of wax Apple – with special reference to ‘Pink’ variety. Asian Australas J Plant Sci Biotechnol 1, 48-53. Shen, C.-H., Krishnamurthy, R., and Yeh, K.-W. (2009). Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant Cell Physiol. 50, 935-946. Shikata, M., Koyama, T., Mitsuda, N., and Ohme-Takagi, M. (2009). Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol. 50, 2133-2145. Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L., and Meyerowitz, E.M. (2007). Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134, 1051-1060. Simon, S.A., Zhai, J., Zeng, J., and Meyers, B.C. (2008). The cornucopia of small RNAs in plant genomes. Rice 1, 52-62. Simpson, G.G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol. 7, 570-574. Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. (2003). FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787. Sinclair, R. (1984). Water relations of tropical epiphytes III. Evidence for crassulacean acid metabolism. J. Exp. Bot. 35, 1-7. Slack, F.J., Basson, M., Liu, Z., Ambros, V., Horvitz, H.R., and Ruvkun, G. (2000). The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659-669. Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120. Tan, J., Wang, H.-L., and Yeh, K.-W. (2005). Analysis of organ-specific, expressed genes in Oncidium orchid by subtractive expressed sequence tags library. Biotechnol. Lett. 27, 1517-1528. Telfer, A., Bollman, K.M., and Poethig, R.S. (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124, 645-654. Usami, T., Horiguchi, G., Yano, S., and Tsukaya, H. (2009). The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136, 955-964. Wang, C.-Y., Chiou, C.-Y., Wang, H.-L., Krishnamurthy, R., Venkatagiri, S., Tan, J., and Yeh, K.-W. (2008). Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227, 1063-1077. Wang, G.-F., Seabolt, S., Hamdoun, S., Ng, G., Park, J., and Lu, H. (2011a). Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiol. 156, 1508-1519. Wang, J.-W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-749. Wang, J.-W., Wang, L.-J., Mao, Y.-B., Cai, W.-J., Xue, H.-W., and Chen, X.-Y. (2005). Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17, 2204-2216. Wang, J.-W., Park, M.Y., Wang, L.-J., Koo, Y., Chen, X.-Y., Weigel, D., and Poethig, R.S. (2011b). miRNA control of vegetative phase change in trees. PLoS Genet. 7, e1002012. Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862. Willmann, M.R., and Poethig, R.S. (2005). Time to grow up: the temporal role of smallRNAs in plants. Curr. Opin. Plant Biol. 8, 548-552. Willmann, M.R., and Poethig, R.S. (2011). The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development 138, 677-685. Wilson, R.N., Heckman, J.W., and Somerville, C.R. (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100, 403-408. Winter, J., Jung, S., Keller, S., Gregory, R.I., and Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228-234. Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547. Wu, G., Park, M.Y., Conway, S.R., Wang, J.-W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-759. Wu, M.-F., Tian, Q., and Reed, J.W. (2006). Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133, 4211-4218. Xie, K., Wu, C., and Xiong, L. (2006). Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280-293. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., and Carrington, J.C. (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol. 138, 2145-2154. Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., and Sun, Q. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 10, 123. Xing, S., Lauri, A., and Zachgo, S. (2006). Redox regulation and flower development: a novel function for glutaredoxins. Plant Biol. 8, 547-555. Yaish, M.W., Colasanti, J., and Rothstein, S.J. (2011). The role of epigenetic processes in controlling flowering time in plants exposed to stress. J. Exp. Bot. 62, 3727-3735. Yamaguchi, A., Wu, M.-F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D. (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 17, 268-278. Yang, L., Liu, Z., Lu, F., Dong, A., and Huang, H. (2006a). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 47, 841-850. Yang, Z., Ebright, Y.W., Yu, B., and Chen, X. (2006b). HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Res. 34, 667-675. Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J.S., and Ahn, J.H. (2005). CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis. Plant Physiol. 139, 770-778. Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., van Tunen, A., and He, Y. (2012). Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J. Exp. Bot. 63, 1025-1038. Zhang, B.H., Pan, X.P., Wang, Q.L., Cobb, G.P., and Anderson, T.A. (2005). Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 15, 336-360. Zhou, X., Wang, G., Sutoh, K., Zhu, J.-K., and Zhang, W. (2008). Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim. Biophys. Acta 1779, 780-788. Zhu, C., Ding, Y., and Liu, H. (2011). MiR398 and plant stress responses. Physiol. Plant. 143, 1-9. Zimmerman, J.K. (1990). Role of pseudobulbs in growth and flowering of Catasetum viridiflavum (Orchidaceae). Am. J. Bot. 77, 533-542. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61632 | - |
| dc.description.abstract | 前人研究指出高溫透過細胞質抗壞血酸過氧化酶 (Oncidium cytosolic ascorbate peroxidase 1,OgcytAPX1) 影響維他命C (ascorbate) 氧化還原比例 (還原/氧化),進而誘導文心蘭萳西品系 (Oncidium Gower Ramsey) 開花。此外,在阿拉伯芥中大量表現OgcytAPX1,經過熱處理後能夠誘導miR156的目標基因SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3) 表現。目前已知miR156-SPL調控模組參與阿拉伯芥花期調控,但尚不明瞭其詳細調控機制。為了解文心蘭中是否存在miR156-SPL調控模組與其位於高溫誘導開花機制中的調控角色,本研究在文心蘭中找到三條受miR156所調控的SPL基因 (OgSPLs),並且分析比較不同生長階段文心蘭假球莖中miR156-SPL調控模組的表現。結果顯示隨著植株生育年齡增長,miR156會逐漸下降;反之OgSPLs則逐漸上升。高溫處理能誘導假球莖與花芽中的OgSPLs表現,外加維他命C則能抑制此誘導效益。然而,不論高溫處理或外加維他命C,都不會顯著影響miR156的表現。結果說明,高溫不需透過miR156,即可直接影響OgSPLs之基因表現。此外,在阿拉伯芥cytAPX1基因缺失突變株apx1中大量表現OgSPLs,可恢復apx1較野生型晚開花的表現型,顯示OgSPLs的調控開花功能作用於OgcytAPX1之下游。綜合上述結果可推論,OgSPLs在文心蘭自然發育過程中受miR156調控植物生長週期;然而,在文心蘭植株進入成熟期後,高溫藉由維他命C氧化還原比例所誘導的開花過程,則不需經由miR156即能直接促進OgSPLs表現而提早開花。 | zh_TW |
| dc.description.abstract | Previous studies have shown that high temperature-induced flowering is regulated by Oncidium cytosolic ascorbate peroxidase 1 (OgcytAPX1) through mediating the redox state of ascorbate (AsA) in Oncidium Gower Ramsey. Ecotopically overexpressing OgcytAPX1 in Arabidopsis can induce the expression of miRNA156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3) under high-temperature treatment. The miR156-SPL regulatory module has been known to regulate flowering in Arabidopsis, but its specific regulatory role on flowering is unclear. In order to dissect the function of miR156-SPL regulatory module on high temperature-induced flowering in Oncidium. We found three possible miR156-target SPL genes in Oncidium (OgSPLs). The study on expression profiling of Oncidium pseudobulbs at different growth stages indicated that miR156 steadily decreased, and OgSPLs increased as the Oncidium matures. Higher growth temperature increased OgSPLs transcription levels in both pseudobulbs and inflorescence buds, but the effect diminished after AsA application. However, the influence on miR156 under these treatments was not significant, suggesting that OgSPLs was independent of miR156 in high temperature-induced flowering mechanism. Meanwhile, ecotopically overexpressing OgSPLs in Arabidopsis mutant apx1 restored the delayed flowering phenotype compared to WT, suggesting that flowering regulation of OgSPLs was located at the downstream of OgcytAPX1. In conclusion, these results indicate that miR156 regulates phase transition through OgSPLs; however, OgSPLs act independently of age-mediated miR156 as one of the AsA redox downstream signal on the high temperature-induced flowering processes in the adult Oncidium. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:07:55Z (GMT). No. of bitstreams: 1 ntu-102-R00b42007-1.pdf: 8545823 bytes, checksum: 8387789c8049ac39f9ea73d7ee618584 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖表目錄 vii 附錄目錄 viii 第一章 前言 1 第一節 文心蘭概述 1 第二節 植物的開花生理 4 第三節 MicroRNAs對植物生理之影響 8 第四節 研究目的 15 第二章 材料與方法 17 第一節 文心蘭高溫與維他命C處理 17 第二節 小分子RAN北方點墨法 (Northern blotting) 17 第三節 擴增 miR156目標基因之全長 22 第四節 利用5’ RACE 檢測目標基因經 miR156切除後所殘餘之片段 28 第五節 miR156目標基因表現量分析 32 第六節 質粒構築與基因轉殖 33 第七節 阿拉伯芥轉殖株篩選與分析 36 第三章 結果 38 第一節 文心蘭miR156的目標基因OgSPLs全長序列的分析 38 第二節 miR156-SPL調控模組在文心蘭不同生育階段的表現情形 39 第三節 miR156-SPL調控模組在文心蘭高溫處理後的表現情形 39 第四節 外加維他命C對文心蘭miR156-SPL調控模組之影響 40 第五節 miR156-SPL調控模組在維他命C缺乏阿拉伯芥突變株之作用與功能 40 第六節 榖胱甘肽與文心蘭miR156-SPL調控模組之關聯性 41 第七節 文心蘭APX與SPL對調控高溫誘導開花之關聯性 42 第四章 討論 46 第一節 文心蘭miR156與目標基因 46 第二節 文心蘭生理年齡與miR156-SPL調控模組之關聯性 47 第三節 miR156-SPL調控模組在高溫誘導開花機制中的角色 48 第四節 榖胱甘肽與文心蘭高溫誘導開花之關聯性 49 第五節 文心蘭高溫誘導開花之調控機制 50 第六節 文心蘭miR172可能扮演的生理角色 51 第七節 未來展望 52 參考文獻 53 圖一、文心蘭SPL與阿拉伯芥 AtSPL3、9、10 及水稻 OsSPL3、12胺基酸編碼序列比對 66 圖二、文心蘭SPL與阿拉伯芥及水稻SPL之親緣演化分析 67 圖三、文心蘭miR156與目標基因SPL結合位置與辨識切位 68 圖四、文心蘭SPL基因在於不同組織表現情形 69 圖五、miR156-SPL調控模組在幼年期與成年期假球莖間之表現情形 70 圖六、miR156-SPL調控模組在不同生長階段之假球莖表現情形 71 圖七、高溫處理對miR156-SPL調控模組表現情形的影響 72 圖八、高溫處理與維他命C對miR156-SPL調控模組於假球莖表現情形的影響 73 圖九、高溫處理與維他命C對文心蘭花芽之影響 74 圖十、缺乏維他命C對阿拉伯芥miR156之影響 75 圖十一、缺乏維他命C對阿拉伯芥SPL基因與開花基因之影響 76 圖十二、榖胱甘肽 (glutathione) 對文心蘭花芽之影響 77 圖十三、35S::OgSPL9-1載體構築示意圖 78 圖十四、35S::OgSPL10-1載體構築示意圖 79 圖十五、35S::OgSPL10-2載體構築示意圖 80 圖十六、阿拉伯芥轉殖株檢測 81 圖十七、阿拉伯芥轉殖株基因表現量分析 82 圖十八、生長溫度對阿拉伯芥轉殖株OgSPLsOE與rOgSPLsOE花期之影響 83 圖十九、OgSPLs對於阿拉伯芥開花基因表現量之影響 84 圖二十、APX與溫度對於AtSPLs表現量之影響 85 圖二十一、轉殖OgSPLs對回復APX突變種阿拉伯芥延遲花期之影響 86 圖二十二、miR156-SPL調控模組參與文心蘭高溫誘導開花機制之假說模型 87 附錄一、文心蘭Gower Ramsey品系親源圖譜 88 附錄二、文心蘭Gower Ramsey生活史 89 附錄三、文心蘭Gower Ramsey各組織名稱示意圖 90 附錄四、植物miRNAs生合成途徑 91 附錄五、補充維他命C對野生型阿拉伯芥、維他命C缺乏型阿拉伯芥以及一氧化氮缺乏型阿拉伯芥花期之影響 92 附錄六、榖胱甘肽對文心蘭花期與花梗延長之影響 93 附錄七、pCAMBIA 1300載體 94 附錄八、利用overlap extension polymerase chain reaction (OE-PCR) 製造site-directed mutagenesis流程示意圖 95 附表一、引子序列 96 附表二、檢索表 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | SPLs基因 | zh_TW |
| dc.subject | 細胞質抗壞血酸過氧化酶 | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | 高溫 | zh_TW |
| dc.subject | miR156 | zh_TW |
| dc.subject | 文心蘭 | zh_TW |
| dc.subject | high temperature | en |
| dc.subject | SPLs | en |
| dc.subject | Oncidium Gower Ramsey | en |
| dc.subject | flowering | en |
| dc.subject | miR156 | en |
| dc.subject | cytosolic ascorbate peroxidase 1 | en |
| dc.title | 文心蘭miR156-SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) 調控模組於高溫誘導開花機制之功能性探討 | zh_TW |
| dc.title | Functional study of miR156-SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) regulatory module involved in high temperature-induced flowering mechanism in Oncidium Gower Ramsey | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹明才(Ming-Tsair Chan),高景輝(Ching-Huei Kao),吳克強(Keqiang Wu),常玉強(Yuh-chyang Charng) | |
| dc.subject.keyword | 細胞質抗壞血酸過氧化酶,開花,高溫,miR156,文心蘭,SPLs基因, | zh_TW |
| dc.subject.keyword | cytosolic ascorbate peroxidase 1,flowering,high temperature,miR156,Oncidium Gower Ramsey,SPLs, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
