請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6162完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
| dc.contributor.author | Jung-Shen Tai | en |
| dc.contributor.author | 戴榮身 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:22:11Z | - |
| dc.date.available | 2015-07-26 | |
| dc.date.available | 2021-05-16T16:22:11Z | - |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-23 | |
| dc.identifier.citation | [1] L. Diosi, N. Gisin, and W. T. Strunz. Non-markovian quantum state diffusion.
Phys. Rev. A, 58:1699–1712, Sep 1998. [2] R. P. Feynman. Simulating Physics with Computers. International Journal of Theoretical Physics, 21:467–488, June 1982. [3] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Review, 41:303–332, January 1999. [4] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM. [5] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74:4091–4094, May 1995. [6] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81:3108–3111, Oct 1998. [7] Yuriy Makhlin, Gerd Schon, and Alexander Shnirman. Quantum-state engineering with josephson-junction devices. Rev. Mod. Phys., 73:357–400, May 2001. [8] L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin. Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond. Science, 314:281–285, October 2006. [9] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature, 393(6681):133–137, May 1998. [10] P. Rebentrost, I. Serban, T. Schulte-Herbruggen, and F. K. Wilhelm. Optimal control of a qubit coupled to a non-markovian environment. Phys. Rev. Lett., 102:090401, Mar 2009. [11] M. Wenin and W. Potz. Minimization of environment-induced decoherence in quantum subsystems and application to solid-state-based quantum gates. Phys. Rev. B, 78:165118, Oct 2008. [12] Jens Clausen, Guy Bensky, and Gershon Kurizki. Bath-optimized minimal-energy protection of quantum operations from decoherence. Phys. Rev. Lett., 104:040401, Jan 2010. [13] Jacob R. West, Daniel A. Lidar, Bryan H. Fong, and Mark F. Gyure. High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett., 105:230503, Dec 2010. [14] V.F. Krotov. Global Methods in Optimal Control Theory. Chapman and Hall/CRC Pure and Applied Mathematics Series. MARCEL DEKKER Incorporated, 1996. [15] R. Clifton. Perspectives on quantum reality: non-relativistic, relativistic, and fieldtheoretic. University of Western Ontario series in philosophy of science. Kluwer Academic Publishers, 1996. [16] I. Percival. Quantum State Diffusion. Cambridge University Press, 1998. [17] Lajos Diosi and Walter T. Strunz. The non-markovian stochastic schrodinger equation for open systems. Physics Letters A, 235(6):569 – 573, 1997. [18] Lajos Diosi, Nicolas Gisin, Jonathan Halliwell, and Ian C. Percival. Decoherent histories and quantum state diffusion. Phys. Rev. Lett., 74:203–207, Jan 1995. [19] Walter T. Strunz, Lajos Diosi, and Nicolas Gisin. Open system dynamics with non-markovian quantum trajectories. Phys. Rev. Lett., 82:1801–1805, Mar 1999. [20] H.J. Carmichael. Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Physics and Astronomy Online Library. Springer, 1998. [21] Walter T. Strunz. Linear quantum state diffusion for non-markovian open quantum systems. Physics Letters A, 224(1):25 – 30, 1996. [22] L.C. Young. Lectures on the Calculus of Variations and Optimal Ccontrol Theory. 1969. [23] M. Athans and P.L. Falb. Optimal Control: An Introduction to the Theory And Its Applications. Dover Books on Engineering Series. DOVER PUBN Incorporated, 2006. [24] Shlomo E. Sklarz and David J. Tannor. Loading a bose-einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear schrodinger equation. Phys. Rev. A, 66:053619, Nov 2002. [25] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, 2000. [26] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59:1–85, Jan 1987. [27] B. M. Garraway. Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A, 55:2290–2303, Mar 1997. [28] Bruce W. Shore and Peter L. Knight. The jaynes-cummings model. Journal of Modern Optics, 40(7):1195–1238, 1993. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6162 | - |
| dc.description.abstract | 在本論文中,我們結合由克羅托夫(V. Krotov)發展出來的最佳化控制理論(Optimal control theory),以及精確推導(exactly derived)得到的主方程式(master equation),以達成非馬可夫開放量子位元系統(non-Markovian open quantum bit system)中,單一量子位元邏輯閘(single-qubit quantum gate)的建構。我們發現,在適當的系統耗散條件之下,最佳化控制方法可以建構高精準度(fidelity)的量子邏輯閘。我們同時定義了一個重要的物理量: Imp ,用以量化在開放系統中,最佳化控制方法對邏輯閘失誤率(gate error)的修正。藉由Imp 的定義,我們可以找到一個理想的系統參數範圍,讓最佳化控制的效益最大化。 | zh_TW |
| dc.description.abstract | In this thesis, we apply the optimal control theory based on the Krotov’s method to an exactly derived master equation to find control pulses for single-qubit quantum gate operations under the influence of an non-Markovian environment. High fidelity quantum gates can be achieved for moderate qubit decaying parameters. An important quantity, improvement Imp, is defined to quantify the correction of gate errors due to
optimal control iteration for the open system. The desired range of parameters for mass improvement is found in which the effect of optimal control iteration is maximized. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:22:11Z (GMT). No. of bitstreams: 1 ntu-102-R00222021-1.pdf: 1535599 bytes, checksum: 4b1ea442aae10b7781882d00f404dbe7 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 論文口試委員審定書i
誌謝ii 中文摘要iii Abstract iv 1 Introduction 1 2 Non-Markovian Quantum State Diffusion 3 2.1 Overview[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Formulation of Non-Markovian Quantum State Diffusion . . . . . . . . 5 2.2.1 Basic Properties of Coherent States . . . . . . . . . . . . . . . . 5 2.2.2 Bargmann States . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Stochastic Schrodinger Equation . . . . . . . . . . . . . . . . . . 11 2.2.5 Convolution-less Formulation of Non-Markovian Quantum Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Spin-1/2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Measurement-like Interaction (Pure Dephasing Model) . . . . . 17 2.3.2 Dissipative Model . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Optimal Control Theory 25 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Optimization Algorithm of a Global Method . . . . . . . . . . . . . . . 26 3.2.1 Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 Parameter function and the equivalent representation . . . . . . 26 3.2.3 An iterative algorithm . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.4 Construction of the parameter function and the improving algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.4.1 The sufficient conditions for local extremum . . . . . . 30 3.2.4.2 Realization of the iterative process . . . . . . . . . . . 33 3.2.5 Reduction of the parameter function . . . . . . . . . . . . . . . 34 3.2.5.1 Linear systems with concave criterion . . . . . . . . . . 34 3.2.5.2 Linear systems with quadratic criterion . . . . . . . . . 35 3.3 Optimization Algorithm of a gradient method . . . . . . . . . . . . . . 35 3.4 Application of OCT to Open Quantum Systems . . . . . . . . . . . . . 37 3.4.1 F(G(T)) first order in state . . . . . . . . . . . . . . . . . . . . 38 3.4.2 F(G(T)) second order in state . . . . . . . . . . . . . . . . . . . 40 3.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Optimal Control of Quantum Gates in Open Systems 43 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Control problem . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3 Gate error and control update . . . . . . . . . . . . . . . . . . . 46 4.2.4 Range of control parameter . . . . . . . . . . . . . . . . . . . . 47 4.2.5 Initial guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.1 Lorentzian-like spectral density . . . . . . . . . . . . . . . . . . 49 4.3.2 Identity gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.3 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.4 Z-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4 Ohmic spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.1 Identity gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.2 Z-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 Environment suppression ability of optimal control . . . . . . . . . . . 61 4.5.1 Error correction due to phase shift . . . . . . . . . . . . . . . . 61 4.5.2 Conditions for mass improvement . . . . . . . . . . . . . . . . . 63 4.5.3 Suppression of dissipation . . . . . . . . . . . . . . . . . . . . . 68 5 Conclusion 70 A Lorentzian spectral density and cavity QED 72 B Fidelity in Closed and Open Systems 75 | |
| dc.language.iso | en | |
| dc.subject | Quantum gate | en |
| dc.subject | Optimal control | en |
| dc.subject | Exact solution | en |
| dc.subject | Non-Markovian | en |
| dc.subject | Open quantum system | en |
| dc.subject | Qubit | en |
| dc.title | 可精確解非馬可夫開放系統中之量子邏輯閘最佳化控制 | zh_TW |
| dc.title | Optimal Control of Quantum Gates in an Exactly Solvable Non-Markovian Open Quantum Bit System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡崇德(Chong-Der Hu),蘇正耀(Zheng-Yao Su) | |
| dc.subject.keyword | 最佳化控制,精確解,非馬可夫,開放量子系統,量子位元,量子邏輯閘, | zh_TW |
| dc.subject.keyword | Optimal control,Exact solution,Non-Markovian,Open quantum system,Qubit,Quantum gate, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 1.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
