Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61610
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorChia-Wei Huen
dc.contributor.author胡家瑋zh_TW
dc.date.accessioned2021-06-16T13:07:15Z-
dc.date.available2018-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-01
dc.identifier.citation1. Macek, B., Mann, M., and Olsen, J. V. (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu. Rev. Pharmacol. Toxicol. 49, 199-221.
2. Pawson, T., and Scott, J. D. (2005) Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci. 30, 286-290.
3. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648.
4. Amoresano, A., Cirulli, C., Monti, G., Quemeneur, E., and Marino, G. (2009) The analysis of phosphoproteomes by selective labelling and advanced mass spectrometric techniques. Methods Mol. Biol. 527, 173-190.
5. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., and Kuster, B. (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017-1031.
6. Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B., and Aebersold, R. (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods. 4, 231-237.
7. Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and Ishihama, Y. (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell Proteomics 6, 1103-1109.
8. Ku, W.-C., Sugiyama, N., and Ishihama, Y. (2012) Large-Scale Protein Phosphorylation Analysis by Mass Spectrometry-Based Phosphoproteomics. Protein Kinase Technologies, 2, 35-46.
9. Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobst, C., Torres, J. L., Peres, C., Harrison, F. H., Gibson, J., and Harwood, C. S. (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22, 55-61.
10. VerBerkmoes, N. C., Shah, M. B., Lankford, P. K., Pelletier, D. A., Strader, M. B., Tabb, D. L., McDonald, W. H., Barton, J. W., Hurst, G. B., Hauser, L., Davison, B. H., Beatty, J. T., Harwood, C. S., Tabita, F. R., Hettich, R. L., and Larimer, F. W. (2006) Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J Proteome Res. 5, 287-298.
11. Barbosa, M. J., Rocha, J. M., Tramper, J., and Wijffels, R. H. (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotechnol. 85, 25-33.
12. Elder, D. J., and Kelly, D. J. (1994) The bacterial degradation of benzoic acid and benzenoid compounds under anaerobic conditions: unifying trends and new perspectives. FEMS Microbiol. Rev. 13, 441-468.
13. Sasikala, C., and Ramana, C. V. (1998) Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv. Microbial Physiol. 39, 339-377.
14. Huang, G., Chen, F., Wei, D., Zhang, X., and Chen, G. (2010) Biodiesel production by microalgal biotechnology. Appl. Energ. 87, 38-46.
15. Carlozzi, P., Pintucci, C., Piccardi, R., Buccioni, A., Minieri, S., and Lambardi, M. (2010) Green energy from Rhodopseudomonas palustris grown at low to high irradiance values, under fed-batch operational conditions. Biotechnol. Lett. 32, 477-481.
16. Carlozzi, P., Buccioni, A., Minieri, S., Pushparaj, B., Piccardi, R., Ena, A., and Pintucci, C. (2010) Production of bio-fuels (hydrogen and lipids) through a photofermentation process. Bioresour. Technol. 101, 3115-3120.
17. Hill, J., Nelson, E., Tilman, D., Polasky, S., and Tiffany, D. (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. 103, 11206-11210.
18. Work, V. H., D'Adamo, S., Radakovits, R., Jinkerson, R. E., and Posewitz, M. C. (2011) Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr. Opin. Biotechnol.
19. Rittmann, B. E. (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 100, 203-212.
20. Li, Q., Du, W., and Liu, D. (2008) Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 80, 749-756.
21. Hoch, J. A. (2000) Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165-170.
22. Hess, J. F., Bourret, R. B., and Simon, M. I. (1988) Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336, 139-143.
23. Cozzone, A. J. (2005) Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J. Mol. Microbiol Biotechnol. 9, 198-213.
24. Kyono, Y., Sugiyama, N., Imami, K., Tomita, M., and Ishihama, Y. (2008) Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res. 7, 4585-4593.
25. Soufi, B., Jers, C., Hansen, M. E., Petranovic, D., and Mijakovic, I. (2008) Insights from site-specific phosphoproteomics in bacteria. Biochim. Biophys. Acta 1784, 186-192.
26. Cozzone, A. J., Grangeasse, C., Doublet, P., and Duclos, B. (2004) Protein phosphorylation on tyrosine in bacteria. Arch. Microbiol. 181, 171-181.
27. Backert, S., and Selbach, M. (2005) Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol. 13, 476-484.
28. Macek, B., Gnad, F., Soufi, B., Kumar, C., Olsen, J. V., Mijakovic, I., and Mann, M. (2008) Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell Proteomics 7, 299-307.
29. Ge, R., Sun, X., Xiao, C., Yin, X., Shan, W., Chen, Z., and He, Q. Y. (2011) Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Proteomics 11, 1449-1461.
30. Sun, X., Ge, F., Xiao, C. L., Yin, X. F., Ge, R., Zhang, L. H., and He, Q. Y. (2010) Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J. Proteome Res. 9, 275-282.
31. Lin, M. H., Hsu, T. L., Lin, S. Y., Pan, Y. J., Jan, J. T., Wang, J. T., Khoo, K. H., and Wu, S. H. (2009) Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol. Cell Proteomics 8, 2613-2623.
32. Ravichandran, A., Sugiyama, N., Tomita, M., Swarup, S., and Ishihama, Y. (2009) Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Proteomics 9, 2764-2775.
33. Soufi, B., Gnad, F., Jensen, P. R., Petranovic, D., Mann, M., Mijakovic, I., and Macek, B. (2008) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8, 3486-3493.
34. Aivaliotis, M., Macek, B., Gnad, F., Reichelt, P., Mann, M., and Oesterhelt, D. (2009) Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum--a representative of the third domain of life. PLoS ONE 4, e4777.
35. Macek, B., Mijakovic, I., Olsen, J. V., Gnad, F., Kumar, C., Jensen, P. R., and Mann, M. (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell Proteomics 6, 697-707.
36. Dispensa, M., Thomas, C. T., Kim, M. K., Perrotta, J. A., Gibson, J., and Harwood, C. S. (1992) Anaerobic growth of Rhodopseudomonas palustris on 4-hydroxybenzoate is dependent on AadR, a member of the cyclic AMP receptor protein family of transcriptional regulators. J. Bacteriol. 174, 5803-5813.
37. Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896-1906.
38. Olsen, J. V., de Godoy, L. M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., and Mann, M. (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell Proteomics 4, 2010-2021.
39. Nakagami, H., Sugiyama, N., Mochida, K., Daudi, A., Yoshida, Y., Toyoda, T., Tomita, M., Ishihama, Y., and Shirasu, K. (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 153, 1161-1174.
40. Mann, M., and Wilm, M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390-4399.
41. Endler, A., Reiland, S., Gerrits, B., Schmidt, U. G., Baginsky, S., and Martinoia, E. (2009) In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 9, 310-321.
42. Munton, R. P., Tweedie-Cullen, R., Livingstone-Zatchej, M., Weinandy, F., Waidelich, M., Longo, D., Gehrig, P., Potthast, F., Rutishauser, D., Gerrits, B., Panse, C., Schlapbach, R., and Mansuy, I. M. (2007) Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol. Cell Proteomics 6, 283-293.
43. Vizcaino, J. A., Cote, R., Reisinger, F., Barsnes, H., Foster, J. M., Rameseder J., Hermjakob, H., Martens, L. (2010) The Proteomics Identifications database: 2010 update. Nucleic Acids Res. 38, D736-742.
44. Wang, R., Fabregat, A., Rios D., Ovelleiro, D., Foster J. M., Cote, R. G., Griss J., Csordas, A., Perez-Riverol, Y., Reisinger, F., Hermjakob, H., Martens, L., Vizcaino, J. A. (2012) PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nat. Biotechnol. 30, 135-137.
45. Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., and Ishihama, Y. (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol. 4, 193.
46. MacLean, D., Burrell, M. A., Studholme, D. J., and Jones, A. M. (2008) PhosCalc: a tool for evaluating the sites of peptide phosphorylation from mass spectrometer data. BMC Res. Notes 1, 30.
47. Kyono, Y., Sugiyama, N., Tomita, M., and Ishihama, Y. (2010) Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. Rapid Commun. Mass Spectrom. 24, 2277-2282.
48. Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., and Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676.
49. Gotz, S., Garcia-Gomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talon, M., Dopazo, J., and Conesa, A. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420-3435.
50. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L. J., and von Mering, C. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561-568.
51. Snel, B., Lehmann, G., Bork, P., and Huynen, M. A. (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28, 3442-3444.
52. Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575-1584.
53. Brohee, S., and van Helden, J. (2006) Evaluation of clustering algorithms for protein-protein interaction networks. BMC bioinformatics 7, 488.
54. Dongen, S. M. v. (2000) Graph clustering by flow simulation. PhD Thesis, University of Utrecht, The Netherlands.
55. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.
56. Shih, Y. P., Kung, W. M., Chen, J. C., Yeh, C. H., Wang, A. H., and Wang, T. F. (2002) High-throughput screening of soluble recombinant proteins. Protein Sci. 11, 1714-1719.
57. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd, and Peterson, K. M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176.
58. Simon, R., Priefer, U., and Puhler, A. (1983) A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat. Biotech. 1, 784-791.
59. Romagnoli, S., and Tabita, F. R. (2006) A novel three-protein two-component system provides a regulatory twist on an established circuit to modulate expression of the cbbI region of Rhodopseudomonas palustris CGA010. J. Bacteriol. 188, 2780-2791.
60. G. Salahas, Y. M. N. A. G. (1990) Assaying for pyruvate, orthophosphate dikinase activity: Necessary precautions with phosphoenolpyruvate carboxylase as coupling enzyme. Photosyn. Res. 24, 183-188.
61. Peitsch, M. C. (1995) Protein Modeling by E-mail. Nat. Biotech. 13, 658-660.
62. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
63. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., and Schwede, T. (2009) The SWISS-MODEL Repository and associated resources. . Nucleic Acids Res. 37, 387-392.
64. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graphics. 14, 27-38.
65. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781-1802.
66. MacKerel, A. D., Brooks, C. L., Nilsson, L., Roux, B., Won, Y., and Karplus, M. (1998) CHARMM: The energy function and its parameterization with an overview of the program, in The Encyclopedia of Computational Chemistry (John Wiley & Sons). Chichester 1, 271-277.
67. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. . J. Comput. Chem. 4, 187-217.
68. Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., and Varadarajan, K. (1999) NAMD2: Greater scalability for parallel moleculardynamics. . J. Comput. Phys. 151, 283-312.
69. Gille, C., and Frommel, C. (2001) STRAP: editor for structural alignments of proteins. Bioinformatics 17, 377-378.
70. Bauer, R. A., Bourne, P. E., Formella, A., Frommel, C., Gille, C., Goede, A., Guerler, A., Hoppe, A., Knapp, E.-W., Poschel, T., Wittig, B., Ziegler, V., and Preissner, R. (2008) Superimpose: a 3D structural superposition server. . Nucleic Acids Res. 36, W47-W54.
71. Shindyalov, I. N., and Bourne, P. E. (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. . Protein Eng. 11, 739-747.
72. Catucci, L., Depalo, N., Lattanzio, V. M., Agostiano, A., Corcelli, A. (2004) Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry 43, 15066-15072.
73. Pocalyko, D. J., Carroll, L. J., Martin, B. M., Babbitt, P. C., and Dunaway-Mariano, D. (1990) Analysis of sequence homologies in plant and bacterial pyruvate phosphate dikinase, enzyme I of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and other PEP-utilizing enzymes. Identification of potential catalytic and regulatory motifs. Biochemistry 29, 10757-10765.
74. Chastain, C. J., Botschner, M., Harrington, G. E., Thompson, B. J., Mills, S. E., Sarath, G., and Chollet, R. (2000) Further analysis of maize C(4) pyruvate,orthophosphate dikinase phosphorylation by its bifunctional regulatory protein using selective substitutions of the regulatory Thr-456 and catalytic His-458 residues. Arch. Biochem. Biophys. 375, 165-170.
75. Reeves, R. E. (1968) A new enzyme with the glycolytic function of pyruvate kinase. J. Biol. Chem. 243, 3202-3204.
76. Jers, C., Soufi, B., Grangeasse, C., Deutscher, J., and Mijakovic, I. (2008) Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev. Proteomics. 5, 619-627.
77. Burnell, J. N., and Hatch, M. D. (1983) Dark-light regulation of pyruvate, Pi dikinase in C4 plants: evidence that the same protein catalyses activation and inactivation. Biochem. Biophys. Res Commun. 111, 288-293.
78. Burnell, J. N., and Hatch, M. D. (1985) Regulation of C4 photosynthesis: purification and properties of the protein catalyzing ADP-mediated inactivation and Pi-mediated activation of pyruvate,Pi dikinase. Arch. Biochem. Biophys. 237, 490-503.
79. Budde, R. J., Holbrook, G. P., and Chollet, R. (1985) Studies on the dark/light regulation of maize leaf pyruvate, orthophosphate dikinase by reversible phosphorylation. Arch. Biochem. Biophys. 242, 283-290.
80. Hatch, M. D., and Slack, C. R. (1969) Studies on the mechanism of activation and inactivation of pyruvate, phosphate dikinase. A possible regulatory role for the enzyme in the C4 dicarboxylic acid pathway of photosynthesis. Biochem. J. 112, 549-558.
81. Fisslthaler, B., Meyer, G., Bohnert, H. J., and Schmitt, J. M. (1995) Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L. Planta 196, 492-500.
82. Roeske, C. A., and Chollet, R. (1987) Chemical modification of the bifunctional regulatory protein of maize leaf pyruvate,orthophosphate dikinase. Evidence for two distinct active sites. J. Biol. Chem. 262, 12575-12582.
83. Chastain, C. J., Failing, C. J., Manandhar, L., Zimmerman, M. A., Lakner, M. M., and Nguyen, T. H. T. (2011) Functional evolution of C4 pyruvate, orthophosphate dikinase. J. Exp. Bot. 62, 3083-3091.
84. Matsuoka, M. (1995) The gene for pyruvate, orthophosphate dikinase in C4 plants: structure, regulation and evolution. Plant Cell Physiol. 36, 937-943.
85. Su, B. L., Meunier, C. F., Rooke, J. C., Leonard, A., and Xie, H. (2010) Living hybrid materials capable of energy conversion and CO2 assimilation. Chem. Commun. 46, 3843-3859.
86. McKinlay, J. B., and Harwood, C. S. (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc. Natl. Acad. Sci. 107, 11669-11675.
87. Rooke, J. C., Leonard, A., Sarmento, H., Meunier, C. F., Descy, J.-P., and Su, B.-L. (2011) Novel photosynthetic CO2 bioconvertor based on green algae entrapped in low-sodium silica gels. J. Mater. Chem. 21, 951-959.
88. Ugwu, C. U., Aoyagi, H., and Uchiyama, H. (2008) Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99, 4021-4028.
89. Rooke, J. C., Leonard, A., Sarmento, H., Descy, J.-P., and Su, B.-L. (2008) Photosynthesis within porous silica gel: viability and activity of encapsulated cyanobacteria. J. Mater. Chem. 18, 2833-2841.
90. Meunier, C. F., Cutsem, P. V., Kwon, Y.-U., and Su, B.-L. (2009) Investigation of different silica precursors: Design of biocompatible silica gels with long term bio-activity of entrapped thylakoids toward artificial leaf. J. Mater. Chem. 19, 4131-4137.
91. Meunier, C. F., Van Cutsem, P., Kwon, Y.-U., and Su, B.-L. (2009) Thylakoids entrapped within porous silica gel: towards living matter able to convert energy. J. Mater. Chem. 19, 1535-1542.
92. Ratledge, C., and Wynn, J. P. (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1-51.
93. Chisti, Y. (2007) Biodiesel from microalgae. Biotech. Adv. 25, 294-306.
94. von Ballmoos, C., Wiedenmann, A., and Dimroth, P. (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu. Rev. Biochem. 78, 649-672.
95. Okuno, D., Iino, R., and Noji, H. (2011) Rotation and structure of FoF1-ATP synthase. J. Biol. Chem. 149, 655-664.
96. Johnson, J. A., and Ogbi, M. (2011) Targeting the F1Fo ATP Synthase: modulation of the body's powerhouse and its implications for human disease. Curr. Med. Chem. 18, 4684-4714.
97. Pogoryelov, D., Yildiz, O., Faraldo-Gomez, J. D., and Meier, T. (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat. Struct. Mol. Biol. 16, 1068-1073.
98. Griffiths, D. E., and Houghton, R. L. (1974) Studies on energy-linked reactions: modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 46, 157-167.
99. Das, B., Mondragon, M. O., Sadeghian, M., Hatcher, V. B., and Norin, A. J. (1994) A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. Adv. Exp. Med. Biol. 180, 273-281.
100. Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J., and Pizzo, S. V. (2001) Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl. Acad. Sci. 98, 6656-6661.
101. Martinez, L. O., Jacquet, S., Esteve, J. P., Rolland, C., Cabezon, E., Champagne, E., Pineau, T., Georgeaud, V., Walker, J. E., Terce, F., Collet, X., Perret, B., and Barbaras, R. (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421, 75-79.
102. Burrell, H. E., Wlodarski, B., Foster, B. J., Buckley, K. A., Sharpe, G. R., Quayle, J. M., Simpson, A. W., and Gallagher, J. A. (2005) Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J. Biol. Educ. 280, 29667-29676.
103. Yamamoto, K., Shimizu, N., Obi, S., Kumagaya, S., Taketani, Y., Kamiya, A., and Ando, J. (2007) Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 293, H1646-1653.
104. Huang, T. C., Chang, H. Y., Hsu, C. H., Kuo, W. H., Chang, K. J., and Juan, H. F. (2008) Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res. 7, 1433-1444.
105. Xing, S. L., Yan, J., Yu, Z. H., and Zhu, C. Q. (2011) Neuronal cell surface ATP synthase mediates synthesis of extracellular ATP and regulation of intracellular pH. Cell Biol. Int. 35, 81-86.
106. Schmidt, C., Lepsverdize, E., Chi, S. L., Das, A. M., Pizzo, S. V., Dityatev, A., and Schachner, M. (2008) Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol. Psychiatry 13, 953-969.
107. Arakaki, N., Nagao, T., Niki, R., Toyofuku, A., Tanaka, H., Kuramoto, Y., Emoto, Y., Shibata, H., Magota, K., and Higuti, T. (2003) Possible role of cell surface H+ -ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Mol. Cancer Res. 1, 931-939.
108. Vantourout, P., Radojkovic, C., Lichtenstein, L., Pons, V., Champagne, E., and Martinez, L. O. (2010) Ecto-F(1)-ATPase: a moonlighting protein complex and an unexpected apoA-I receptor. World J. Gastroenterol. 16, 5925-5935.
109. Chang, S. Y., Park, S. G., Kim, S., and Kang, C. Y. (2002) Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase. Its functional implication in endothelial cell proliferation. J. Biol. Chem. 277, 8388-8394.
110. Burwick, N. R., Wahl, M. L., Fang, J., Zhong, Z., Moser, T. L., Li, B., Capaldi, R. A., Kenan, D. J., and Pizzo, S. V. (2005) An Inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J. Biol. Chem. 280, 1740-1745.
111. Scotet, E., Martinez, L. O., Grant, E., Barbaras, R., Jeno, P., Guiraud, M., Monsarrat, B., Saulquin, X., Maillet, S., Esteve, J. P., Lopez, F., Perret, B., Collet, X., Bonneville, M., and Champagne, E. (2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22, 71-80.
112. Mowery, Y. M., and Pizzo, S. V. (2008) Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol. Ther. 7, 1836-1838.
113. Fu, Y., and Zhu, Y. (2010) Ectopic ATP synthase in endothelial cells: a novel cardiovascular therapeutic target. Curr. Pharm. Des. 16, 4074-4079.
114. Wang, W. J., Ma, Z., Liu, Y. W., He, Y. Q., Wang, Y. Z., Yang, C. X., Du, Y., Zhou, M. Q., and Gao, F. (2012) A monoclonal antibody (Mc178-Ab) targeted to the ecto-ATP synthase beta-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin. Exp. Med. 12, 3-12.
115. Kenan, D. J., and Wahl, M. L. (2005) Ectopic localization of mitochondrial ATP synthase: a target for anti-angiogenesis intervention? J Bioenerg. Biomembr. 37, 461-465.
116. Kim, B. W., Choo, H. J., Lee, J. W., Kim, J. H., and Ko, Y. G. (2004) Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp. Mol. Med.36, 476-485.
117. Chi, S. L., and Pizzo, S. V. (2006) Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res. 66, 875-882.
118. Chang, H. Y., Huang, H. C., Huang, T. C., Yang, P. C., Wang, Y. C., and Juan, H. F. (2012) Ectopic ATP synthase blockade suppresses lung adenocarcinoma growth by activating the unfolded protein response. Cancer Res.72, 4696-4706.
119. Larsen, J. E., and Minna, J. D. (2011) Molecular biology of lung cancer: clinical implications. Clin. Chest Med. 32, 703-740.
120. Wen, J., Fu, J., Zhang, W., and Guo, M. (2011) Genetic and epigenetic changes in lung carcinoma and their clinical implications. Mod. Pathol. 24, 932-943.
121. Li, T., Kung, H. J., Mack, P. C., and Gandara, D. R. (2013) Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J. Clin. Oncol. 31, 1039-1049.
122. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., and Adjei, A. A. (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584-594.
123. Mitchell, P., Mok, T., Barraclough, H., Strizek, A., Lew, R., and van Kooten, M. (2011) Smoking History As a Predictive Factor of Treatment Response in Advanced Non-Small-Cell Lung Cancer: A Systematic Review. Clin. Lung Cancer. 13, 239-51.
124. Lopez Guerra, J. L., Wei, Q., Yuan, X., Gomez, D., Liu, Z., Zhuang, Y., Yin, M., Li, M., Wang, L. E., Cox, J. D., and Liao, Z. (2011) Functional promoter rs2868371 variant of HSPB1 associates with radiation-induced esophageal toxicity in patients with non-small-cell lung cancer treated with radio(chemo)therapy. Radiother. Oncol. 101, 271-277.
125. Krystal, G. W., Honsawek, S., Litz, J., and Buchdunger, E. (2000) The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin. Cancer Res. 6, 3319-3326.
126. Dempke, W. C., Suto, T., and Reck, M. (2010) Targeted therapies for non-small cell lung cancer. Lung Cancer 67, 257-274.
127. Rabindran, S. K., Discafani, C. M., Rosfjord, E. C., Baxter, M., Floyd, M. B., Golas, J., Hallett, W. A., Johnson, B. D., Nilakantan, R., Overbeek, E., Reich, M. F., Shen, R., Shi, X., Tsou, H. R., Wang, Y. F., and Wissner, A. (2004) Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 64, 3958-3965.
128. Hunter, T. (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236.
129. Schlessinger, J. (2000) Cell signaling by receptor tyrosine kinases. Cell 103, 211-225.
130. Harsha, H. C., and Pandey, A. (2010) Phosphoproteomics in cancer. Mol Oncol. 4, 482-495.
131. Lim, Y. P. (2005) Mining the tumor phosphoproteome for cancer markers. Clin. Cancer Res. 11, 3163-3169.
132. Zanivan, S., Gnad, F., Wickstrom, S. A., Geiger, T., Macek, B., Cox, J., Fassler, R., and Mann, M. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res. 7, 5314-5326.
133. Kostenko, S., and Moens, U. (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell. Mol. Life Sci. 66, 3289-3307.
134. Spector, N. L., Ryan, C., Samson, W., Levine, H., Nadler, L. M., and Arrigo, A. P. (1993) Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J. Cell. Physio. 156, 619-625.
135. Scaltriti, M., Dawood, S., and Cortes, J. (2012) Molecular pathways: targeting hsp90--who benefits and who does not. Clin. Cancer Res. 18, 4508-4513.
136. Loktionova, S. A., Ilyinskaya, O. P., Gabai, V. L., and Kabakov, A. E. (1996) Distinct effects of heat shock and ATP depletion on distribution and isoform patterns of human Hsp27 in endothelial cells. FEBS Lett. 392, 100-104.
137. Tanabe, K., Matsushima-Nishiwaki, R., Dohi, S., and Kozawa, O. (2010) Phosphorylation status of heat shock protein 27 regulates the interleukin-1beta-induced interleukin-6 synthesis in C6 glioma cells. Neuroscience 170, 1028-1034.
138. Heinrich, J. C., Tuukkanen, A., Schroeder, M., Fahrig, T., and Fahrig, R. (2011) RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J. Cancer Res. Clin Oncol. 137, 1349-1361.
139. Travers, J., Sharp, S., and Workman, P. (2012) HSP90 inhibition: two-pronged exploitation of cancer dependencies. Drug Dev. Res. 17, 242-252.
140. Barrott, J. J., and Haystead, T. A. (2013) Hsp90, an unlikely ally in the war on cancer. FEBS J. 280, 1381-1396.
141. Morrison, D. K. (2012) MAP kinase pathways. Cold Spring Harb. Perspect. Biol. 4, a011254.
142. Courcelles, M., Fremin, C., Voisin, L., Lemieux, S., Meloche, S., and Thibault, P. (2013) Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol. Syst. Biol. 9, 669.
143. Perlson, E., Hanz, S., Ben-Yaakov, K., Segal-Ruder, Y., Seger, R., and Fainzilber, M. (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45, 715-726.
144. Hung, C. C., Ichimura, T., Stevens, J. L., and Bonventre, J. V. (2003) Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J. Biol. Chem. 278, 29317-29326.
145. Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 7, 731-740.
146. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A. J. (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484-494.
147. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 26, 1367-1372.
148. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 10, 1794-1805.
149. Elias, J. E., and Gygi, S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207-214.
150. Mason, C. W., Swaan, P. W., and Weiner, C. P. (2006) Identification of interactive gene networks: a novel approach in gene array profiling of myometrial events during guinea pig pregnancy. Am. J. Obstet. Gynecol. 194, 1513-1523.
151. Nikolsky, Y., Ekins, S., Nikolskaya, T., and Bugrim, A. (2005) A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol. Lett. 158, 20-29.
152. Lalor, P. A., Mapp, P. I.,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61610-
dc.description.abstract蛋白職磷酸化存在於原核及真核生物中,是一種重要的轉譯後修飾。為了解細胞生理的調控,系統性研究細胞內的磷酸化蛋白已成為必要的項目。在本研究中,磷酸蛋白體分析被分別應用於真核和原核系統,藉此去探討細胞內分子的調控,並利用「羥基酸修正金屬氧化物層析」(hydroxy acid-modified metal oxide chromatography, HAMMOC) 去有效的純化磷酸化胜肽。在原核生物磷酸化蛋白體學研究裡,我們探討Rhodopseudomonas palustris (R. palustris)不同的代謝調控。R. palustris 是一種紫色非硫化厭氧光合菌,具有代謝多樣性並可生長於光合與化學異營條件。此細菌也具有製造生質能源與生物分解的潛力。本研究為第一個揭開R. palustris在磷酸化蛋白體資訊,包含化學異營的100條磷酸化胜肽(54個磷酸化蛋白)及光合異營的74條磷酸化胜肽(42個磷酸化蛋白)。其中, 丙酮酸磷酸雙激酶(pyruvate phosphate dikinase, PPDK)在第487個蘇氨酸的磷酸化被發現可能參與在不同生長條件的碳代謝調控。我們在此研究中發現PPDK在PH生長中帶有較多第487個蘇氨酸磷酸化與較高的活性。在PH的條件下,我們進一步發現,過度表現的正常PPDK能比突變無法磷酸化的PPDK(T487V)更能促進脂質的製造。本研究展現了PPDK在生質柴油─脂質製造的重要性,並揭露第487個蘇氨酸磷酸化在脂質生成及PH生長的調控角色。在真核生物的磷酸化蛋白體研究中,ATP合成酶抑制劑在肺癌細胞中的反應途徑是探討的主題。ATP合成酶是一個由多種蛋白質組成的化合物並促進ATP的生成。長期以來ATP合成酶被認定只存於粒線體,但近年研究發現,ATP合成酶也會出現在特定細胞的細胞表面上(包含癌細胞),此種合成酶被稱作異位型ATP合成酶(ecto-ATP synthase)。ATP合成酶抑制劑被認為具有成為癌症藥物的潛力,其打擊癌症的作用主要是透過有效的抑制異位型ATP合成酶,但並不會對粒線體的功能造成明顯影響。在本研究中我們利用定量磷化蛋白體學方式,分析在癌細胞及異種移植組織中ATP合成酶抑制劑所引起的分子反應。利用此方法,共2834條磷酸化胜肽(836的磷酸化蛋白)與862條磷酸化胜肽(423個磷酸化蛋白)分別被發現於癌細胞與異種移植組織。基因本體分析顯示ATP合成酶抑制劑會影響蛋白質折疊、細胞週期及細胞骨架的磷酸化調控。透過集群與網路分析時間依賴的磷酸化蛋白體資訊,我們進一步發現ATP合成酶抑制劑能立即的抑制熱休克蛋白(heat shock protein 90, HSP90AB1)在第255個絲胺酸的磷酸化,並於抑制劑處理的晚期造成有絲分裂活化蛋白質激酶(mitogen-activated protein kinase 1, MAPK1)在活化功能區(TEY domain)的去磷酸化。MAPK1參與在MAPKs/ERKs的訊息傳遞中,而此訊息傳遞已知與癌症的發展有關。我們利用HSP90在第255氨基酸的突變(HSP90-S255A)去闡明HSP90的磷酸化對MAPKs/ERKs訊息傳遞的影響,並發現HSP90-S255A的突變無法調控MAPK1的磷酸化及MAPKs/ERKs的訊息傳遞。這些研究結果顯示,利用ATP合成酶抑制劑阻斷癌細胞的異位型ATP合成酶,能透過調控HSP90磷酸化所控制的MAPKs/ERKs訊息傳遞,來達到抑制癌細胞生長的目的。本研究不僅提供了發展標靶治療的新方向,也拓展了對抑制肺腫瘤發長之反應途徑的了解。zh_TW
dc.description.abstractProtein phosphorylation is one of the most important post-translational modifications in cells, including prokaryotes and eukaryotes. Systematic study of phosphoproteome in cells is becoming a crucial determinant for understanding the regulation of cell physiology. In the study, we applied the phosphoproteomic analyses to investigate the molecular regulation in both prokaryotic and eukaryotic systems. An efficient approach, hydroxy acid-modified metal oxide chromatography (HAMMOC), was used for phosphopeptide enrichment. In the prokaryotic phosphoproteome study, the regulation of different metabolic states in Rhodopseudomonas palustris (R. palustris) was studied. R. palustris is a purple nonsulfur anoxygenic phototrophic bacterium with metabolic versatility and is able to grow under photoheterotrophic and chemoheterotrophic states. It also has the potential for bioenergy production and biodegradation. This study is the first to identify the phosphoproteome of R. palustris including 100 phosphopeptides from 54 phosphoproteins and 74 phosphopeptides from 42 phosphoproteins in chemoheterotrophic and photoheterotrophic growth conditions, respectively. In the identified phosphoproteome, phosphorylation at the threonine residue, Thr487, of pyruvate phosphate dikinase (PPDK, RPA1051) was found to participate in the regulation of carbon metabolism. Here, we show that PPDK enzyme activity is higher in photoheterotrophic growth, with Thr487 phosphorylation as a possible mediator. Under the same photoheterotrophic conditions, R. palustris with overexpressed wild-type PPDK showed an enhanced accumulation of total lipids than those with mutant PPDK (T487V) form. This study reveals the role of the PPDK in the production of biodiesel material, lipid content, with threonyl-phosphorylation as one of the possible regulatory events during photoheterotrophic growth in R. palustris. In the eukaryotic phosphoproteomic study, the response pathways of ATP synthase inhibitor in lung cancer cells were investigated. ATP synthase is a multimeric protein complex that catalyzes the synthesis of ATP. For a long time, animal ATP synthase was believed to be found only in mitochondria; however, in recent studies, ATP synthase was also found on the extracellular surface of some cell types including cancer cells, named as ectopic ATP synthase. ATP synthase inhibitor is a potential drug candidate for fighting cancer by blocking the ectopic ATP synthase without obvious damages to mitochondrial function. In this study, we performed quantitative phosphoproteomics to elucidate the molecular response to ectopic ATP synthase inhibition in both cell and xenograft systems. A total of 2834 phosphopeptides covering 836 phosphoproteins and 862 phosphopeptides containing 423 phosphoproteins were identified in cells and xenograft phosphoproteome, respectively. The gene ontology analysis showed that ATP synthase inhibitor treatment had the impacts on phosphorylated proteins involved in protein folding, cell cycle, and cytoskeleton. Clustering and network analysis of time-dependent phosphorylation profiles further revealed that inhibiting ectopic ATP synthase could immediately down-regulate the phosphorylation of heat shock protein 90 (HSP90AB1), and reduce the function of mitogen-activated protein kinase 1 (MAPK1) in the late-response by dual de-phosphorylation of a TEY activation motif, which is involved in the MAPKs/ERKs cascade associated with cancer progression. We next found that the dephosphorylated HSP90-S255A with alanine substitution of the identified phosphorylated residue Ser255 was unable to mediate the phosphorylation of MAPK1 and the activity of MAPKs/ERKs signaling. These results imply that inhibiting ecto-ATP synthase might suppress the cancer growth through the de-phosphorylation of HSP90-regulated MAPKs/ERKs signaling. This study provides the new insight into the development of novel therapeutic strategies that exploit response pathways on lung tumor suppression.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:07:15Z (GMT). No. of bitstreams: 1
ntu-102-F96b43014-1.pdf: 23129802 bytes, checksum: 5dd32dede118ee67d0a1656df42801be (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
ACKNOWLEDGE 1
中文摘要 3
ABSTRACT 5
CONTENTS 7
LIST OF FIGURES 11
LIST OF TABLES 13
Chapter 1 Phosphoproteomic analysis using hydroxy acid-modified metal oxide chromatography 14
2.1 Introduction 14
Chapter 2 Phosphoproteomic study: (1) Regulation of different metabolic states in Rhodopseudomonas palustris 17
2.1 Introduction 17
2.1.1 Rhodopseudomonas palustris 17
2.1.2 Biofuel production in microorganisms. 18
2.1.3 Protein phosphorylatioin in prokaryotes. 18
2.2 Aims of the study 20
2.3 Materials and Methods 21
2.3.1 Cell culture and lysate preparation 21
2.3.2 Protein digestion. 21
2.3.3 Phosphopeptide enrichment. 22
2.3.4 NanoLC–MS/MS analysis. 23
2.3.5 Data analysis. 24
2.3.6 Bioinformatics analysis. 26
2.3.7 Construction of functional interaction networks. 26
2.3.8 Cloning and expression of PPDK in E. coli. 27
2.3.9 Site-directed mutagenesis. 28
2.3.10 Overexpression of wild-type and site-specific mutant PPDK in R. palustris. 29
2.3.11 PPDK activity assay. 30
2.3.12 Circular dichroism spectra of PPDK and PPDK-T487V. 31
2.3.13 Relative quantitative analysis for phosphorylation stoichiometry estimation. 31
2.3.14 Homology modeling of PPDK. 32
2.3.15 Molecular dynamics (MD) simulation of phosphorylated PPDK. 33
2.3.16 Total lipid extraction. 34
2.3.17 Thin-layer chromatography. 34
2.4 Results 35
2.4.1 Phosphoproteome of R. palustris under different growth conditions 35
2.4.2 Classes of phosphorylated protiens in two different growth conditions.. ….37
2.4.3 Distinct regulation of pyruvate phosphate dikinase in CH and PH growth of R. palustris 38
2.4.4 Phosphorylation of Thr487 residue in PPDK regulates enzyme activity. 39
2.4.5 PPDK phosphorylation controlled total lipid biosynthesis 40
2.5 Discussion 42
2.6 Conclusion 45
Chapter 3 Phosphoproteomic study: Response pathways of ATP synthase inhibitor in lung cancer cells 46
3.1 Introduction 46
3.1.1 ATP synthase 46
3.1.2 Ectopic ATP synthase 47
3.1.3 Ecto-ATP synthase in cancer cells 48
3.1.4 Lung cancer 49
3.1.5 Protein phosphorylation in cell signaling 50
3.1.6 Heat shock protein 90 51
3.1.7 MAPKs/ ERKs pathway 52
3.2 Aims of the study 54
3.3 Materials and Methods 55
3.3.1 Cell culture 55
3.3.2 Drug treatment in cultured cells 55
3.3.3 Tumorigenicity assays in athymic mice 55
3.3.4 Haematoxylin and eosin (H&E) stain 56
3.3.5 Immunohistochemistry 57
3.3.6 Sample preparation for cell phosphoprome 57
3.3.7 Sample preparation for xenograft phosphoprome 58
3.3.8 Dimethyl labeling 59
3.3.9 Phosphopeptide enrichment 59
3.3.10 NanoLC-MS/MS analysis 60
3.3.11 Data analysis of cell phosphoproteome 61
3.3.12 Data analysis of xenograft phosphoproteome 62
3.3.13 Bioinformatics analysis 63
3.3.14 Western blot analysis 64
3.3.15 RNA extraction and cDNA synthesis 64
3.3.16 Cloning and site-directed mutagenesis of HSP90 65
3.3.17 Transient transfection for HSP90 expression and analysis of cell viability 66
3.4 Results 67
3.4.1 Phosphoproteomic profiling of lung cancer cells in response to ecto-ATP synthase inhibition 67
3.4.2 Phosphoproteomic profiling of lung cancer xenograft tissues in response to ecto-ATP synthase inhibition 68
3.4.3 Biological functions in association with ecto-ATP synthase inhibition… 70
3.4.4 Analyses of time-dependent phosphoproteome identify HSP90 and MAPK1 as the possible early- and late- regulators during ecto-ATP synthase inhibition 71
3.4.5 The phosphorylation of HSP90AB1 on Ser255 plays an important role in MAPK/ERK1/2 signal transduction 73
3.5 Discussion 74
3.6 Conclusion 78
REFERENCE 79
FIGURES 97
TABLES 123
dc.language.isoen
dc.subject異位型ATP 合成&#37238zh_TW
dc.subject肺癌zh_TW
dc.subject光合異營zh_TW
dc.subject紫色不含硫菌zh_TW
dc.subject磷酸蛋白體學zh_TW
dc.subjectRhodopseudomonas palustrisen
dc.subjectlung canceren
dc.subjectecto-ATP synthaseen
dc.subjecthotoheterotrophicen
dc.subjectPhosphoproteomicsen
dc.title磷酸蛋白體學研究:(1)光合菌Rhodopseudomonas palustris的不同代謝調控(2)細胞表面ATP合成酶的反應路徑zh_TW
dc.titlePhosphoproteomic studies:(1) Regulation of different metabolic states in Rhodopseudomonas palustris (2) Response pathways of ATP synthase inhibitor in lung cancer cellsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee石濱泰(Yasushi Ishihama),吳世雄(Shin-Hsiung Wu),陳建生(Chien-Sheng Chen),溫進德(Jin-Der Wen),黃翠琴(Tsui-Chin Huang)
dc.subject.keyword磷酸蛋白體學,紫色不含硫菌,光合異營,異位型ATP 合成&#37238,肺癌,zh_TW
dc.subject.keywordPhosphoproteomics,Rhodopseudomonas palustris,hotoheterotrophic,ecto-ATP synthase,lung cancer,en
dc.relation.page164
dc.rights.note有償授權
dc.date.accepted2013-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
22.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved