請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6159完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇(Guang-Yu Guo) | |
| dc.contributor.author | Xue-Yong Fu | en |
| dc.contributor.author | 傅學勇 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:22:08Z | - |
| dc.date.available | 2015-07-30 | |
| dc.date.available | 2021-05-16T16:22:08Z | - |
| dc.date.copyright | 2013-07-30 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-24 | |
| dc.identifier.citation | 參考文獻
[1-1] Wikipedia,2013,Moore’s law. Available at : http://en.wikipedia.org/wiki/Moore's_law [2-1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). [2-2] W. Kohn, and L. J. Sham Phys. Rev 140, A1133-A1138, (1965). [2-3] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). [2-4] U. V. Barth and L. Hedin, J. Phys. C Solid State Phys. 5, 1629 (1972). [2-5] F. Bloch Z. Physik, 57 549 (1929). [2-6] D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983); A. D. Becke, Phys.Rev. A 38, 3098 (1988); J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M.R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); 48, 4978(E)(1993). [2-7] P. E. Blocjl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, ibid. 59, 1758 (1999). [2-8] R. M. Martin, “Electronic Structure, basic theory and practical methods” Cambridge. [2-9] Wikipedia, Pseudopotential. Available at: http://en.wikipedia.org/wiki/Pseudopotential [3-1] J. J. SAKURAI. “Modern Quantum Mechanics”. Addison-Wesley, New York, revised edition (1994). [3-2] ROLAND WINKLER. Springer, Berlin (2003). [3-3] M. S. Bahramy, R. Arita, N. Nagaosa. Phys.Rev. B 84, 041202(R) (2011) [3-4] Z hang, S. C., Physics 1, 6(2008). [3-5] X.-L. Qi, S.-C. Zhang, Phys. Today 63, 33 (2010). [3-6] Bernevig, B. A., T. L. Hughes, and S. C. Zhang, Science 314,1757(2006). [3-7] Konig, M., S. Wiedmann, C. Bru‥ne, A. Roth, H. Buhmann, L. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766(2007). [3-8] Roth, A., C. Brune, H. Buhmann, L.W. Molenkamp, J. Maciejko,X.-L. Qi, and S.-C. Zhang, Science 325, 294(2009). [3-9] Kane, C. L., and E. J. Mele, Phys. Rev. Lett. 95, 226801(2005) [3-10] Wu, C., B. A. Bernevig, and S. C. Zhang, 2006, Phys. Rev. Lett. 96,106401. [3-11] Xu, C., and J. Moore, Phys. Rev. B 73, 045322(2006). [3-12] Xia, Y., et al., Nature Phys. 5, 398(2009). [3-13] Zhang, H., C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nature Phys. 5, 438(2009). [3-14] Chen, Y. L., et al., Science 325, 178(2009). [3-15] Xia, Y., et al., Nature Phys. 5, 398(2009). [3-16] Hsieh, D., et al., Science 323, 919(2009). [3-17] M. Z. Hasan, C. L. Kane, Rev. Mod. Phys.82.3045(2010). [4-1] M. Klintenberg, arXiv,1007.4838(2010) [4-2] Bilbao crystallographic server. Available at: http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-kv-list?gnum=12 [4-3] T. Valla,, Huiwen Ji,er al, Phys. Rev. B 86,241101(2012) [5-1] Lin-Lin Wang, Duane D. Johnson, Phys. Rev. B 83,241309(2011) [5-2] Peng Chen, et al, Phys. Rev. Lett 105,076801(2010) [5-3] Yi Zhang, et al, Nature Phys, 10.1038(2010) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6159 | - |
| dc.description.abstract | 近年來人們發現在某些薄膜材料所產生的表面態具有非常特殊的電子自旋排列,而這種特殊的電子自旋排列主要起因於自旋軌道角動量耦合效應。故人們開始紛紛投入具有強自旋軌道耦合效應的材料,並將它們製作成薄膜,試圖利用這種特殊的自旋關係來製作量子元件。然而在這種材料中最引起人們注意的即是具有非常特別之表面態的拓樸絕緣體。
我們試圖尋找一些人們預測因為強軌道自旋耦合效應所引起的拓樸絕緣體材料。我們分別計算了Bi2TeI、Bi4Se3以及Bi3Se4這三種材料的能帶結構,並且判斷這三種材料的薄膜是否有成為拓樸絕緣體的可能。但最後我們發現此三種材料都沒有機會變成拓樸絕緣體。 在本文的第二部分我們將利用第一原理態密度泛函理論去探討在Bi2Te2Se以及Bi2Se3之薄膜結構所造成的表面能帶,即俗稱的表面態。利用計算不同厚度的薄膜,來探討厚度對於這兩種材料的能帶結構影響。隨後我們把外加電場加在垂直於Bi2Se3薄膜平面的方向,於是發現了因為外加電場所造成的能帶分裂,即Rashba效應。我們計算了各種不同大小的外加電場所產生的能帶結構。由簡單的量子力學理論預測到了Rashba效應的大小應是與外加電場成正比,但我們發現Rashba效應的大小並不與外加電場成正比,而是與電場大小呈現震盪起伏的關係。 | zh_TW |
| dc.description.abstract | In recent years, people have found some surface states which featured the fantastic electric spin orientation. It is caused by strong spin-orbit coupling. Many people began to study the strong spin-orbital coupling material. They tried to make thin films of such materials to find some special states that can be the brand new quantum devices. Therefore, the most interesting of them are the topological insulators. There are two edge states which are protected by time reversal symmetry at the surface of a topological insulator. A lot of materials were predicted to be the topological insulators. In this thesis, we considered some possible topological insulators,Bi2TeI , Bi4Se3 and Bi3Se4. We calculated the band structures of them to determine whether they could be the topological insulators. Unfortunately, we did not find out any topological state.
We also calculated the surface states of Bi2Te2 Se thin films and Bi2Se3 thin films. The band structures of thin films with different thickness were calculated to find how its electronic structure would depend on their thickness. After that we turn on the electric field that was perpendicular to the Bi2e3 thin films. We found the spin splitting on the band structure of Bi2Se3 thin films. We changed the magnitude of electric field, and found the variant magnitude of band splitting depends strongly on different electric field. According to the Rashba model, the Rashba parameter should be proportional to the magnitude of electric field. Surprisingly, by our computation results show that the Rashba parameter oscillated with the magnitude of electric field. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:22:08Z (GMT). No. of bitstreams: 1 ntu-102-R00245016-1.pdf: 4126295 bytes, checksum: 17e086ba5d653ed50a18a3feeaeb86e8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
圖目錄 6 表目錄 8 第一章 緒論 9 1-1 研究動機 9 1-2 研究目標 10 1-3 論文架構 11 第二章 第一原理的理論計算 12 2-1 密度泛函理論 12 2-2 局域密度近似法(Local Density Approximation) 16 2-3 廣義梯度近似法(Generalized Gradient Approximation) 17 2-4 平面波展開法 18 2-5 虛位勢 ( Pseudopotential ) 19 2-6 Projector Augmented Wave Method (PAW) 21 第三章 相對論電子的自旋和軌道耦合 23 3-1 自旋和軌道耦合效應 23 3-2 外加電場所造成的Rashba效應 23 3-2-1 Rashba模型 23 3-2-2 二維自由電子氣的本徵態 24 3-3 拓樸絕緣體 26 3-3-1 二維的拓樸絕緣體 26 3-3-2 三維的拓樸絕緣體 28 第四章 尋找Bi2 TeI、Bi4Se3以及Bi3Se4的拓樸態 29 4-1 Bi2TeI塊材的能帶結構 29 4-2 Bi2TeI薄膜的能帶結構 33 4-3 Bi4Se3塊材的能帶結構 38 4-4 Bi2Se4塊材的能帶結構 44 第五章 Bi2Te2Se薄膜及在Bi2Se3薄膜上的Rashba效應 51 5-1 Bi2Te2Se薄膜的能帶結構 51 5-2 Bi2Se3薄膜的能帶結構 56 5-3 Bi2Se3薄膜上的Rashba效應 61 第六章 總結 68 參考文獻 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | first principle calculation | en |
| dc.subject | spin-orbit coupling | en |
| dc.subject | topological insulator | en |
| dc.subject | Rashba effect | en |
| dc.subject | quantum spin hall effect | en |
| dc.title | 利用第一原理理論計算尋找強軌道自旋耦合與拓樸絕緣材料 | zh_TW |
| dc.title | Search for Strong Spin-orbit Coupling Material and Topological Insulator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周方正(Fang-Cheng Chou),李偉立(Wei-Li Lee),薛宏中(Hung-chung Hsueh) | |
| dc.subject.keyword | 自旋軌道耦合效應,拓樸絕緣體,Rashba效應,量子自旋霍爾效應,第一原理計算, | zh_TW |
| dc.subject.keyword | spin-orbit coupling,topological insulator,Rashba effect,quantum spin hall effect,first principle calculation, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 4.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
