請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61577完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林茂昭 | |
| dc.contributor.author | Hong-Fu Chou | en |
| dc.contributor.author | 周泓甫 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:06:20Z | - |
| dc.date.available | 2013-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-02 | |
| dc.identifier.citation | [1] H. Y. Chen, M. C. Lin, and Y. L. Ueng. Low-density parity-check codes
with run length limited (rll) constraints. IEEE Trans. Magn., 44:2235{ 2242, September 2008. [2] A. Gallopoulos, C. Heegard, and P. H. Siegel. The power spectrum of run-length-limited codes. IEEE Trans. Commun., 37(9):906{917, September 1989. [3] J. W. M. Bergmans, S. Mita, M. Izumita, and N. Doi. Partial-response decoding of rate l/2 modulation codes for digital storage. IEEE Trans. Commun., 39(11):1569{1581, November 1991. [4] A. R. Calderbank, R. Laroiab, and S. W. McLaughlin. Coded modula- tion and precoding for electron-trapping optical memories. IEEE Trans. Commun., 46(8):1011{1019, August 1998. [5] B. H. Marcus, P. H. Siegel, and J. K. Wolf. Finite-state modulation codes for data storage. IEEE J. Select. Areas Commun., 10(1):5{37, January 1992. [6] M. Jin, K. A. S. Immink, and B. F. Boroujeny. Design techniques for weakly constrained codes. IEEE Trans. Commun., 51(5):709{714, May 2003. [7] A. J. Wijngaarden and K. A. S. Immink. Construction of maximum run-length limited codes using sequence replacement techniques. IEEE J. Select. Areas Commun., 28(2):200{207, February 2010. [8] J. Moon and L. R. Carley. Efficient sequence detection for intersymbol interference channels with run-length constraints. IEEE Trans. Com- mun., 42(9):2654{2660, September 1994. [9] K. A. S. Immink and H. D. L. Hollmann. Pre x-synchronized run- length-limited sequences. IEEE J. Select. Areas Commun., 10(1):214{ 212, January 1992. [10] H. Hu, L. Pan, H. Hu, and D. Y. Xu. 4-level run-length limited optical storage on photo-chromic materials. In Proc. of SPIE 5966, Interna- tional Symposium on Optical Storage, pages Y1{Y4, 2005. [11] H. Hu, L. F. Pan, G. S. Qi, H. Hu, and D. Y. Xu. Study of multi- level run-length limited photo-chromic storage. Acta Physica Sinica, 55:1759{1763, April 2006. [12] H. HU, J. XIONG, D. XU, and G. QI. Modulation codes for multi- wavelength and multi-level photochromic optical recording channel. Jpn. J. Appl. Phys., 45(2). [13] H. HU, L. PAN, J. XIONG, and Yi NI. New efficient run-length limited code for multilevel read-only optical disc. Jpn. J. Appl. Phys., 46(6). [14] J. Song, Y. Ni, D. Y. Xu, L. F. Pan, Q. C. Zhang, and H. Hu. Modeling and realization of a multilevel readonly disk. Optics Express, 14:1199{ 1207, 2006. [15] Q. H. Shen, J. Pei, H. Z. Xu, L. Wang, and D. Y. Xu. Analysis of the differential phase detection signal in multi-level run-length limited read-only disk driver. Jpn. J. Appl. Phys., 45:5764{5768, 2006. [16] H. Hu and L. Pan. Prml detection of multi-level dvd channels with run-length-limited modulation. In Proc. ICC, pages 6238{6242, 2007. [17] J. L. Fan and J. M. Cioffi. Constrained coding techniques for soft itera- tive decoders. In Proc. IEEE Global Telecommun. Conf., pages 723{727, 1999. [18] B. M. Kurkoski, P. H. Siegel, and J. K. Wolf. Joint message-passing decoding of ldpc codes and partial-response channels. IEEE Trans. In- form. Theory, 48(6):1410{1422, June 2002. [19] B. Vasic and K. Pedagani. Run-length-limited low-density parity check codes based on deliberate error insertion. IEEE Trans. Magn., 40(3):1738{1743, May 2004. [20] J. Lu and K. G. Boyer. Novel rll-ecc concatenation scheme for high- density magnetic recording. IEEE Trans. Magn., 43(6):2271{2273, June 2007. [21] Z. Li and B.V.K. Vijaya Kumar. An improved bit- ipping scheme to achieve run length control in coded systems. IEEE Trans. Magn., 41:2980{2982, October 2005. [22] Z. Li and B. V. Kumar. Low-density parity-check codes with run length limited (rll) constraints. IEEE Trans. Magn., 42:344{349, February 2006. [23] R. G. Gallager. Low-density parity-check codes. MA: MIT Press, 1963. [24] D. J. C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory, 5(2):399{431, March 1997. [25] K. A. S. Immink, P. H. Siegel, and J. K.Wolf. Codes for digital recorders. IEEE Trans. Inform. Theory, 44(6):2260{2300, October 1998. [26] H. Pozidis, G. Cherubini, A. Pantazi, A. Sebastian, and E. Elefthe- riou. Channel modeling and signal processing for probe storage channels. IEEE J. Select. Areas Commun., 2(2):143{157, February 2010. [27] K. A. S. Immink, J. Y. Kim, S. W. Suh, and S. K. Ahn. Iterative cor- rection of intersymbol interference: Turbo equalization. Europ. Trans. Telecommun., 6:507{511, September 1995. [28] J. L. Fan and A. R. Calderbank. A modi ed concatenated coding scheme with applications to magnetic storage. IEEE Trans. Inform. Theory, 44(4):1565{1574, July 1998. [29] K. Sakaniwa K. Kasai, T. Shibuya. Detailed representation of irregular ldpc code ensembles and density evolution. Proc. ISIT, 2003. [30] I. Fijalkow C. Poulliat, D. Declercq. Optimization of ldpc codes for uep channels. In Proc. ISIT, 2004. [31] H. P. Nik, N. Rahnavard, and F. Fekri. Nonuniform error correction using low-density parity-check codes. IEEE Trans. Inform. Theory, 51(7):2702{2714, 2005. [32] N. Rahnavard, H. P. Nik, and F. Fekri. Unequal error protection using partially regular ldpc codes. IEEE Trans. on Commun., 55(3):387{391, 2007. [33] N. Rahnavard and F. Fekri. New results on unequal error protection using ldpc codes. IEEE Trans. on Commun. letter, 10(1):43{45, January 2006. [34] N. Deetzen and S. Sandberg. Design of unequal error protection ldpc codes for higher order constellations. In Proc. ICC, 2007. [35] H. Song, B. V. Kumar, E. Kurtas, Y. Y., Laura L. McPheters, and S. W. McLaughlin. Iterative decoding for partial response (pr), equal- ized, magneto-optical (mo) data storage channels. IEEE J. Select. Areas Commun., 19(4):774{782, April 2001. [36] Hong-Fu Chou, Yeong-Luh Ueng, Mao-Chao Lin, and M. P. C. Fossorier. An rll-constrained ldpc coded recording system using deliberate flipping and ipped-bit detection. IEEE Trans. Communications, 60(12):3587{ 3596, December 2012. [37] Hsin-Yi Chen, Hong-Fu Chou, Mao-Chao Lin, and Shih-Kai Lee. Ca- pacity approaching run-length-limited codes for multilevel recording sys- tems. IEEE Trans. Magn., 46(1):95{104, January 2010. [38] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inform. Theory, 20(2):284{287, March 1974. [39] Y. Kou, S. Lin, and M. P. C. Fossorier. Low-density parity-check codes based on nite geometries: A rediscovery and new results. IEEE Trans. on Inform. Theory, 47:2711{2763, November 2001. [40] S. T. Brink. Convergence behavior of iteratively decoded parallel con- catenated codes. IEEE Trans. Commun., 40:1727{1737, October 2001. [41] B. M. Kurkoski, P. H. Siegel, and J. K. Wolf. Joint message-passing de- coding of ldpc codes and partial-response channels. IEEE Trans. Commun., 48(6):1410{1422, June 2002. [42] L. L. Hanzo, R. G. Maunder, J. Wang, and L. L. Yang. Near-Capacity Variable-Length Coding: Regular and EXIT-Chart-Aided Irregular Designs. Wiley-IEEE Press; 1 edition, 2010. [43] R. M. Tanner. A recursive approach to low complexity. IEEE Trans. Inform. Theory, (5):533{547, September 1981. [44] L. Lan, L. Q. Zeng, Y. Y. Tai, L. Chen, S. Lin, and K. A. Ghaffar. Con- struction of quasi-cyclic ldpc codes for awgn and binary erasure channels: a nite eld approach. IEEE Trans. Inform. Theory,, 53(7):2429{2458, July 2007. [45] B. Masnick and J.K. Wolf. On linear unequal error protection codes. IEEE Trans. Inform. Theory,, 13(4):600{607, October 1967. [46] R. H. Morelos-Zaragoza, H. Imai, and O. Y. Takeshita. Coded modula- tion or satellite digital video broadcasting. IEICE Trans. Fund. Electron. Commun. Comput. Sci.,, (9):1355{1360, 1996. [47] M. Isaka, M.P.C. Fossorier, and S. Lin R. H. Morelos-Zaragoza, and H. Imai. Multilevel coded modulation for unequal error protection and multistage decodingxpart i: Symmetric constellations. IEEE Trans. on Commun., 48(2):204{213, February 2000. [48] M. P. C. Fossorier, S. Lin, and D. Rhee. Bit error probability for maximum likelihood decoding of linear block codes and related soft- decision decoding methods. IEEE Trans. Inform. Theory, 44(9):3083{ 3090, November 1998. [49] T. J. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity- approaching low-density parity-check codes. IEEE Trans. Inform. The- ory, 47:619{637, 2001. 130 [50] X. Y. Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Communications, 51(1):386{392, January 2005. [51] T. J. Richardson and R. L. Urbanke. The capacity of low-density parity- check codes under message-passing decoding. IEEE Trans. Inform. The- ory, 47(2):599{618, February 2001. [52] A. Kavcic, X. Ma, and M. Mitzenmacher. Binary intersymbol interfer- ence channels: Gallager codes, density evolution, and code performance bounds. IEEE Trans. Inform. Theory, 49(7):1636{1652, 2003. [53] M. Yang, W. E. Ryan, and Y. Li. Design of efficiently encodable moderate-length high-rate irregular ldpc codes. IEEE Trans. Commu- nications, 49(4):564{571, 2004. [54] S. Y. Chung, G. D. Forney, J. T. Richardson, , and R. Urbanke. On the design of low-density parity-check codes within 0.0045 db of the shannon limit. IEEE Commun. Lett., 5(4):58{60, February 2001. [55] J. Chen and M. P. C. Fossorier. Density evolution for two improved bp-based decoding algorithms of ldpc codes. IEEE Trans. on Commun. Letter, 6(5):208{210, May 2002. [56] S. Y. Chung. On the Construction of Some Capacity-Approaching Coding Schemes. PhD Thesis of Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, 2000. 131 [57] R. Storn and X. Price. Binary intersymbol interference channels: Gal- lager codes, density evolution, and code performance bounds. Journal of Global Optimization, 11(7):341{359, November 1997. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61577 | - |
| dc.description.abstract | 在高效率的調變與錯誤更正碼之中,任意翻轉法(deliberate flipping)根據
持續長度限制法則(Run-Length-Limited constraint)附加錯誤位元於寫入端資 料。在讀取端,高編碼率限制RLL錯誤位元的更正能力。在本篇論文中,我 們使用低密度奇偶檢查碼(LDPC)對於RLL限制儲存系統,主要進行兩種研究 主題包括RLL翻轉位元偵測和不均勻保護能力系統設計。首先,我們簡介傳 統任意翻轉法的寫入端與翻轉位元偵測的讀取端。接著,我們描述儲存系統 通道的特性與模型。這兩種研究主題,分別說明如下: 在第一項研究主題,RLL 翻轉位元偵測包含兩種方法改善系統的錯誤效 能。第一種方法是減少偵測錯誤所造成的影響透過調整軟式資訊量,這項方 法分別為抹除操作法,修剪操作法和平均修剪操作法。我們應用EXIT 特性 來顯示此方法的效能分析。第二種方法是增加正確偵測的可能性透過翻轉位 元演算法,其中演算中使用RLL 限制法則與LDPC 碼的冗餘檢查。因此,透 過傳統式的反轉位元LDPC 解碼法來提供可靠度測量改善偵測準確度。此改 善方法是為了RLL 偵測所設計。上述兩種方法可以合併起來改善錯誤更正效 能。 此外,傳統多階層編碼調變的不均勻保護系統已被研究來作為我們的參 考依據。訊息串列包含幾種不同的重要程度以及需要不同更正能力來保護對 抗雜訊。不均勻保護能力系統設計方針在設計時須了解以便於設計好的系統 效能。因此,再第二項研究主題,我們循著過去的設計思維使用不規則式的 LDPC 碼所具有的不均勻保護能力,來設計能更正RLL 錯誤的系統。我們藉 由一種分配技術去限制翻轉位元的出現位置且設定此位置具有較強壯的保護 能力。此外,我們設計訊號符號對應來減少相鄰鄰居的數目達到減少干擾以 增強強壯更正能力的位元。接著,我們推倒密度演進方程式來改善LDPC 碼 的效能。再者,EXIT 特性分析推薦的碼分佈具有的優點。最佳化過程透過差 分演化法來找到我們設計的系統的最佳碼分佈。 | zh_TW |
| dc.description.abstract | For efficient modulation and error control coding, the deliberate flipping approach impose the run-length-limited(RLL) constraint by bit error before recording. From the read side, high coding rate limits the correcting
capability of RLL bit error. In this thesis, we study the low-density parity-check (LDPC) coding for RLL constrained recording system based on two main research topics including the RLL flipped bit detection and the unequal protection coding scheme design. For the fi rst topic, the detection of RLL flipped bit is provided by two approaches for enhancing the error performance of such a system. The first approach is to alleviate the negative effect of incorrect estimation of the flipped bits by adjusting the soft information. These methods are organized as erase operation, clipping operation and average clipping operation. We apply EXIT characteristic to illustrate the performance evaluation of the proposed method. The second approach is to increase the likelihood of the correct detection of flipped bits by designing a flipped-bit detection algorithm that utilizes both the RLL constraint and the parity-check constraint of the LDPC code. Hence, the detection accuracy is enhanced by providing the reliability measurement from conventional bit flipping decoding for LDPC code. The modi fied measurement is designed for RLL detection. These two approaches can be combined to obtain signifi cant improvement in BER performance over previously proposed methods. For the second topic, UEP capability of irregular-LDPC codes are used for recovering flipped bits. We provide an allocation technique to limit the occurrence of flipped bit on the bit with robust correction capability. In addition, we consider the signal labeling design to decrease the number of nearest neighbor for enhancing the robust bit. We also apply the density evolution technique to the the proposed system for evaluating the code performances. In addition, we utilize the EXIT characteristic to reveal the decoding behavior of the recommended code distribution. Finally, the optimization approach for the the best distribution is proven by differential evolution for the proposed system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:06:20Z (GMT). No. of bitstreams: 1 ntu-102-D95942020-1.pdf: 1434715 bytes, checksum: dc5923c4510e1154d889e6a978fc2fd6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Abstract 1
1 Introduction 14 1.1 Low-Density Parity-Check Code for RLL Recording System . 15 1.2 Unequal Protection LDPC Coded Multilevel Recording System 17 2 An RLL-constrained LDPC Coded Recording System Using Deliberate Flipping and Flipped-bit Detection 22 2.1 Deliberate Flipping at the Write Side . . . . . . . . . . . . . . 22 2.2 Channel Model for Magneto-Optical Recording Channel . . . . 24 2.3 Turbo Equalization at the Read Side . . . . . . . . . . . . . . 27 2.4 Detection of Flipped Bits at the Read Side . . . . . . . . . . . 27 3 Enhanced Flipped-Bit Detection by Adjusting the Soft In- formation and Parity-Check Constraint 29 3.0.1 The Method for Soft Information Adjustment . . . . . 31 3.1 EXIT Characteristics for Performance Evaluation . . . . . . . 34 3.1.1 Simulation Results . . . . . . . . . . . . . . . . . . . . 41 3.2 Parity-check Constraint for Estimating Unreliable Bits . . . . 43 3.2.1 Proposed Pcheck-1 Method . . . . . . . . . . . . . . . 44 3.2.2 Proposed Pcheck-2 and Pcheck-3 Method . . . . . . . . 47 3.2.3 Numerical Analysis for Reliability Measurement . . . . 49 3.3 Checking both Parity-check constraint and RLL Constraint . . 50 3.3.1 Proposed Rcheck-O Method . . . . . . . . . . . . . . . 51 3.3.2 Proposed Rcheck-I Method . . . . . . . . . . . . . . . . 51 3.3.3 Proposed Rcheck-II method . . . . . . . . . . . . . . . 52 3.3.4 Statistic Analysis for the Approach of Combining Pcheck and Rcheck Methods . . . . . . . . . . . . . . . . . . . 54 3.3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . 57 3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 61 4 Unequal Error Protection technique for RLL-constraint LDPC Coded Recording System 62 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 The 4-level RLL Coding Scheme for Unequal Protection . . . . 67 4.3 The Proposed Unequal Protection Approach . . . . . . . . . . 72 4.3.1 Proposed UEP Scheme Type I . . . . . . . . . . . . . . 72 4.3.2 Proposed UEP Scheme Type II . . . . . . . . . . . . . 75 4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 90 5 Optimization Approach for Proposed Flipped System using Density Evolution and Differential Evolution 92 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2 A Flipped and Non- ipped Based Density Evolution for Pro- posed UEP Recording System . . . . . . . . . . . . . . . . . . 98 5.2.1 Proposed Min-Sum Density Evolution Algorithm for UEP Recording System . . . . . . . . . . . . . . . . . . 99 5.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . 103 5.3 EXIT Characteristics for Iterative Decoding Analysis . . . . . 106 5.4 Optimization of the Node Distribution for the Proposed Scheme108 5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 119 6 Conclusion 121 | |
| dc.language.iso | en | |
| dc.subject | 限制碼 | zh_TW |
| dc.subject | 儲存 | zh_TW |
| dc.subject | 低密度奇偶檢查碼 | zh_TW |
| dc.subject | 持續長度限制法則 | zh_TW |
| dc.subject | Constrained codes | en |
| dc.subject | low-density parity-check (LDPC) codes | en |
| dc.subject | recording | en |
| dc.subject | run-length-limited (RLL) | en |
| dc.title | 用於記錄系統之低密度奇偶檢查碼研究 | zh_TW |
| dc.title | LDPC Coding for Recording System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蘇賜麟,陳柏寧,陸曉峰,呂忠津,鐘嘉德 | |
| dc.subject.keyword | 限制碼,低密度奇偶檢查碼,儲存,持續長度限制法則, | zh_TW |
| dc.subject.keyword | Constrained codes,low-density parity-check (LDPC) codes,recording,run-length-limited (RLL), | en |
| dc.relation.page | 132 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
