請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61576完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李枝宏 | |
| dc.contributor.author | Chong-Jia Ciou | en |
| dc.contributor.author | 邱重嘉 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:06:18Z | - |
| dc.date.available | 2015-08-07 | |
| dc.date.copyright | 2013-08-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-02 | |
| dc.identifier.citation | [1] K. Yang, Y. Zhang, and Y. Mizuguchi, 'A signal subspace-based subband approach to space-time adaptive processing for mobile communications,' IEEE Transactions on Signal Processing, vol. 49, pp. 401 - 413, Feb 2001.
[2] S. Cerutti, 'In the Spotlight: Biomedical Signal Processing,' IEEE Reviews in Biomedical Engineering, vol. 3, pp. 10 - 11, 2010. [3] J. W. Woods and S. D. O'Neil, 'Subband coding of images,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34, pp. 1278 - 1288, Oct 1986. [4] M. G. Bellanger and J. Daguet, 'TDM-FDM Transmultiplexer: Digital Polyphase and FFT,' IEEE Transactions on Communications, vol. 22, pp. 1199 - 1205, Sep 1974. [5] P. Vary and U. Heute, 'A short-time spectrum analyzer with polyphase-network and DFT,' Signal Processing, vol. 2, pp. 55 - 65, Jan 1980. [6] G. Strang, Introduction to Linear Algrbra: Wellesley-Cambridge Press, 2005. [7] Y. C. Lim, J. H. Lee, C. K. Chen, and R. H. Yang, 'A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design,' IEEE Transactions on Signal Processing, vol. 40, pp. 551 - 558, Mar 1992. [8] T. Steihaug, 'The Conjugate Gradient Method and Trust Regions in Large Scale Optimization,' SIAM Journal on Numerical Analysis, vol. 20, pp. 626 - 637, Jun 1983. [9] J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer-Verlag, 1999. [10] M. R. Osborne and G. A. Watson, 'An Algorithm for Minimax Approximation in the Nonlinear Case,' The Computer Journal, vol. 12, pp. 63 - 68, 1969. [11] J. A. Nelder and R. Mead, 'A simplex method for function minimization,' The Computer Journal, vol. 7, pp. 308 - 313, 1965. [12] 楊元豪, 'Novel 2-D Digital Filter Structures Using Recursive Digital Allpass Filters and Their Applications to Multirate Systems,' Ph.D. dissertation, Graduate Institute of Communication Engineering, National Taiwan University, Oct 2007. [13] A. H. Gray and J. D. Markel, 'Digital lattice and ladder filter synthesis,' IEEE Transactions on Audio and Electroacoustics, vol. 21, pp. 491 - 500, Dec 1973. [14] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 1st ed. Englewood Cliffs, NJ: Prentice Hall, 1989. [15] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1984. [16] J. H. Lee and Y. H. Yang, 'General lattice structures of 2-D recursive digital filters,' presented at the The 54th IEEE International Midwest Symposium on Circuits and Systems, Seoul, Aug 2011. [17] J. H. Lee and Y. H. Yang, 'Design of two-channel linear-phase QMF banks based on real IIR all-pass filters,' IEE Proceedings - Vision, Image and Signal Processing, vol. 150, pp. 331 - 338, Oct 2003. [18] F. J. Brophy and A. C. Salazar, 'Two Design Techniques for Digital Phase Networks,' The Bell System Technical Journal, vol. 54, pp. 767 - 781, Apr 1975. [19] A. G. Deczky, 'Synthesis of recursive digital filters using the minimum p-error criterion,' IEEE Transactions on Audio and Electroacoustics, vol. 20, pp. 257 - 263, Oct 1972. [20] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993. [21] 楊元豪, 'Optimal Design of IIR All-Pass Filters and Filter Banks Based on L Criterion,' M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2002. [22] S. Lawson, 'Direct approach to design of PCAS filters with combined gain and phase specification,' IEE Proceedings Vision, Image & Signal Processing, vol. 141, pp. 161 - 167, Jun 1994. [23] P. P. Vaidyanathan, P. Regalia, and S. K. Mitra, 'Design of doubly-complementary IIR digital filters using a single complex allpass filter, with multirate applications,' IEEE Transactions on Circuits and Systems, vol. 34, pp. 378 - 389, Apr 1987. [24] 謝易霖, 'Design of One-dimensional and Two-dimensional Wavelet Filter Banks,' M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2010. [25] Y. H. Yang and J. H. Lee, 'Design of 2-D Doubly Complementary Filters Based on Nonsymmetric Half-Plane Allpass Filters,' presented at the 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Honolulu, HI, Apr 2007. [26] S. C. Pei and J. J. Shyu, 'Eigenfilter design of 1-D and 2-D IIR digital all-pass filters,' IEEE Transactions on Signal Processing, vol. 42, pp. 966 - 968, Apr 1994. [27] Y. P. Lin and P. P. Vaidyanathan, 'Theory and design of two-dimensional filter Banks: A review,' Multidimensional Systems and Signal Processing, vol. 7, pp. 263 - 330, Oct 1996. [28] J. H. Lee and Y. H. Yang, 'Two-Channel Quincunx QMF Banks Using Two-Dimensional Digital Allpass Filters,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, pp. 2644 - 2654, Dec 2009. [29] J. H. Lee and Y. H. Yang, 'Two-Channel Parallelogram QMF Banks Using 2-D NSHP Digital All-Pass Filters,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 2498 - 2508, Sep 2010. [30] T. Chen and P. P. Vaidyanathan, 'Multidimensional multirate filters and filter banks derived from one-dimensional filters,' IEEE Transactions on Signal Processing, vol. 41, pp. 1749 - 1765, May 1993. [31] H. Toyoshima, M. Ikehara, and S. Takahashi, 'A new class of 2-D digital filters composed of all-pass subfilters,' Electronics and Communications in Japan (Part III: Fundamental Electronic Science), vol. 73, pp. 91 - 98, 1990. [32] S. M. Phoong, C. W. Kim, P. P. Vaidyanathan, and R. Ansari, 'A New Class of Two-Channel Biorthogonal Filter Banks and Wavelet Bases,' IEEE Transactions on Signal Processing, vol. 43, pp. 649 - 665, Mar 1995. [33] 劉邦賢, 'Efficient Design of One and Two Dimensional Wavelet Filters Using All-pass Filters,' M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61576 | - |
| dc.description.abstract | 在數位訊號處理的參考文獻中,我們得知晶格架構有兩大優點:1 對於反射係數量化後所造成的誤差較小,亦即係數的敏感度較小。2 由於晶格架構是由許多單元串聯而成,而每個單元的內容相同,稱為模組,當需要更高階數的濾波器時,只需要增加串聯的模組,不需要重新設計電路,因此在積體電路的實現上有較方便的設計優點。
本論文著重在晶格架構與直接架構的設計比較。在一維部分,我們討論了數位全通濾波器、雙重互補濾波器對和正交鏡像濾波器組。在二維部分,我們討論了支持區間為非對稱半平面以及對稱半平面的全通濾波器,以及二維雙重互補濾波器對和二維正交鏡像濾波器組。本論文中有許多設計實例,呈現令人滿意的結果,因此可以驗證將晶格架構用在建構濾波器及濾波器組的可行性。 | zh_TW |
| dc.description.abstract | As we know from the apllications in digital signal processing, two merits about lattice structure are as follows. First, the sensitivity of quantization effets in the implementation of the system is smaller. Second, lattice structure is cascaded from many sections, which are called module. Each of them has the same contents. when it needs a filter with higher order, it only has to add modules to cascade, instead of redesign the circuit. Therefore, it is more convenient to accomplish the work of IC design.
This thesis puts emphasis on the comparing the designs of lattice structure and direct form. In the part of 1-D case, we have discussed DAFs, DCFs, and QMF banks. In the part of 2-D case, we have discussed the NSHP and SHP DAFs, 2-D DCFs, and 2-D QMF banks. There are many examples in this thesis representing satisfactory results, so it can prove the feasibility of using lattice structure in the constructing of filters and filter banks. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:06:18Z (GMT). No. of bitstreams: 1 ntu-102-R00942122-1.pdf: 10022902 bytes, checksum: 668d3f2e1a56816dac0518a22ac3910f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 viii 表目錄 xxi 第1章 緒論 1 1.1 研究動機 1 1.2 論文組織架構 2 第2章 最佳化問題與演算法 3 2.1 簡介 3 2.2 基於minimax準則的WLS演算法 3 2.3 線性搜尋法與信任區間法 6 2.3.1 非線性最佳化問題 6 2.3.2 線性搜尋法 7 2.3.3 Trust-Region Newton-CG Method 8 第3章 晶格架構 9 3.1 簡介 9 3.2 一維晶格架構濾波器 9 3.2.1 FIR晶格架構 9 3.2.2 IIR晶格架構 11 3.3 二維晶格架構濾波器 13 3.3.1 非對稱半平面晶格架構 13 3.3.2 對稱半平面晶格架構 15 第4章 一維遞迴數位全通濾波器設計 16 4.1 簡介 16 4.2 直接架構一維全通濾波器 16 4.3 晶格架構一維全通濾波器 17 4.4 Minimax準則之直接架構一維全通濾波器設計 19 4.5 Minimax準則之晶格架構一維全通濾波器設計 22 4.6 設計實例與結果討論 24 4.6.1 結果討論 31 第5章 一維雙重互補濾波器對設計 32 5.1 簡介 32 5.2 一維DC濾波器對之架構及理論分析 32 5.3 Minimax準則之一維DC濾波器對的設計方法 33 5.4 設計實例與結果討論 36 5.4.1 結果討論 44 第6章 一維正交鏡像濾波器組之設計 45 6.1 簡介 45 6.2 一維QMF banks之架構及理論分析 45 6.3 基於minimax準則的設計方法 48 6.3.1 考慮穩定性問題的全通濾波器之理想相位響應 48 6.3.2 以相位近似當作目標函數 52 6.3.2.1 直接架構下的全通濾波器設計 52 6.3.2.2 晶格架構下的全通濾波器設計 53 6.3.3 同時考慮止帶大小與群延遲相位誤差的目標函數 53 6.3.3.1 直接架構下的設計 55 6.3.3.2 晶格架構下的設計 57 6.4 設計實例與結果討論 61 6.4.1 設計實例1 62 6.4.2 設計實例2 72 6.4.3 設計實例3 81 6.4.4 設計實例4 91 6.4.5 結果討論 100 第7章 用一個純延遲和一個二維全通濾波器設計二維DC濾波器對 101 7.1 簡介 101 7.2 直接架構二維數位全通濾波器 101 7.2.1 直接架構NSHP數位全通濾波器的性質 102 7.2.2 直接架構SHP數位全通濾波器的性質 103 7.3 晶格架構二維數位全通濾波器 104 7.3.1 晶格架構NSHP數位全通濾波器的性質 104 7.3.2 晶格架構SHP數位全通濾波器的性質 106 7.3.3 SHP下直接架構與晶格架構的轉換關係 107 7.4 二維DC濾波器架構 109 7.5 DC-HB性質 111 7.6 直接架構二維數位全通濾波器的設計 113 7.6.1 NSHP下直接架構全通濾波器的設計方法 113 7.6.2 SHP下直接架構全通濾波器的設計方法 114 7.7 晶格架構二維數位全通濾波器的設計 115 7.7.1 NSHP下晶格架構全通濾波器的設計方法 115 7.7.2 SHP下晶格架構全通濾波器的設計方法 116 7.7.2.1 設計方法一 117 7.7.2.2 設計方法二 118 7.8 設計實例與結果討論 119 7.8.1 設計實例1 120 7.8.2 設計實例2 157 7.8.3 結果討論 192 第8章 用對稱半平面全通濾波器設計鑽石形正交鏡像濾波器組 193 8.1 簡介 193 8.2 二維正交鏡像濾波器組之架構及理論分析 193 8.3 QQMF banks之架構及理論分析 194 8.4 鑽石形正交鏡像濾波器組的設計 198 8.4.1 考慮穩定性問題的全通濾波器之理想相位 198 8.4.2 基於L2準則的設計 202 8.4.2.1 設計直接架構SHP全通濾波器建構的QQMF banks 202 8.4.2.2 設計晶格架構SHP全通濾波器建構的QQMF banks 204 8.4.3 基於L∞準則的設計 205 8.4.3.1 設計直接架構SHP全通濾波器建構的QQMF 207 8.4.3.2 設計晶格架構SHP全通濾波器建構的QQMF 210 8.5 設計實例與結果討論 214 8.5.1 設計實例1 215 8.5.2 設計實例2 245 8.5.3 結果討論 261 第9章 用一維全通濾波器建構二維正交鏡像濾波器組 262 9.1 簡介 262 9.2 使用一維全通濾波器建構二維正交鏡像濾波器組之概念 262 9.3 使用一維全通濾波器建構QQMF banks之設計 265 9.4 設計實例與結果討論 265 9.4.1 結果討論 288 第10章 結論 289 參考資料 290 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非線性最佳化問題 | zh_TW |
| dc.subject | 多速率系統 | zh_TW |
| dc.subject | 晶格狀架構 | zh_TW |
| dc.subject | 正交鏡像濾波器組 | zh_TW |
| dc.subject | 雙重互補濾波器對 | zh_TW |
| dc.subject | 全通濾波器 | zh_TW |
| dc.subject | Quadrature Mirror filter banks | en |
| dc.subject | Multirate system | en |
| dc.subject | Non-linear optimization problem | en |
| dc.subject | Allpass filter | en |
| dc.subject | Doubly Complementary filters | en |
| dc.subject | Latice structure | en |
| dc.title | 基於晶格架構的數位全通濾波器與濾波器組之最佳化設計 | zh_TW |
| dc.title | Optimal Design of Digital Allpass Filters and Filter Banks Based on Lattice Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 貝蘇章,馮世邁 | |
| dc.subject.keyword | 晶格狀架構,多速率系統,非線性最佳化問題,全通濾波器,雙重互補濾波器對,正交鏡像濾波器組, | zh_TW |
| dc.subject.keyword | Latice structure,Multirate system,Non-linear optimization problem,Allpass filter,Doubly Complementary filters,Quadrature Mirror filter banks, | en |
| dc.relation.page | 292 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
