Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61563
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑤明
dc.contributor.authorWei-Jhih Linen
dc.contributor.author林威志zh_TW
dc.date.accessioned2021-06-16T13:05:57Z-
dc.date.available2016-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-02
dc.identifier.citation[1] Y.F Gerasimov, G. T. Chogolev, and Y.F. Maidanik, “Heat Pipe.” USSR Inventor's Certificate 4492131974, 1974.
[2] Y. F. Maydanik, S.V.Vershinin, V.F. Kholodov, and Y.E. Dolgrev, “Heat Transfer Apparatus,” U.S. Patent 4515209, 1984.
[3] Y.F. Maidanik, Yu.G. Fershtater, and V.G. Pastukhov, “Loop Heat Pipes: Development, Investigation and Elements of Engineering Calculations,” Ural Division of the USSR Academy of Sciences, 1989.
[4] Y. F. Maidanik, Y. G. Fershtater, and K. A. Goncharov, “Capillary Pumped Loop for the Systems of Thermal Regulation of Spacecraft,” in Proc. of 4th European Symposium on Space Environmental Control Systems, Florence, Italy, 1991, vol. 1, pp. 87-92.
[5] Yu. F. Maydanik, Y.G. Fershtater, and V.G. Pastukhov, “Development and Investigation of Two-Phase Loopswith High-Pressure Capillary Pumps for Space Application,” in Proc. of the 8th International Heat Pipe Conference, Beijing, China, Sept. 14-19, 1992, pp.425-433.
[6] D. Wolf et al., 'Loop Heat Pipes - Their Performance and Potential,' SAE Technical Paper 941575, 1994. doi:10.4271/941575.
[7] M. Nikitkin and B. Cullimore, “CPL and LHP Technologies: What are the Differences, What are the Similarities,” SAE Technical Paper 981587, 1998, doi:10.4271/981587.
[8] Q. Liao and T.S. Zhao, “Evaporative heat transfer in a capillary structure heated by a grooved block,” J. Thermophys. Heat Tr., vol. 13, no. 1, pp. 126-133, 1999
[9] K.T. Feldman, D.L. Noren, “Design of heat pipe cooler laser mirrors with inverted meniscus evaporator wick”,AIAA Paper, no.148, 1980.
[10] S.W. Wee, K.D.Kihm, K.P.Hallinan, ”Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film”, Int.J. Heat Mass Transfer , vol.48, pp. 265-278,2005.
[11] James Thomson, “On certain curious motions observable on the surfaces of wine and other alcoholic liquours,” Philosophical Magazine Series 4, vol. 10, issue 67, pp. 330-333, 1855.
[12] Marangoni, C. G. M., “Sull Expansiome dell Goccie di un Liquido Galleggianti sulla Superficie di Altro Liquido,” Tipografia del Fratelli Fusi, Pavia, 1865.
[13] Monti, R, “Physics of Fluids in Microgravity,” Taylor and Francis, 2001.
[14] Van P. Carey, “Liquid–Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment,” Taylor and Francis, London, 2001.
[15] R Vochten, G Petre, “Study of the heat of reversible adsorption at the air-solution interface,” J. Colloid and Interface Science, vol. 42, issue 2, pp. 320–327, 1973.
[16] Abe Y., Iwasaki A., Tanaka K., “Microgravity Experiments on Phase Change of Self-Rewetting Fluids,” Ann. N.Y. Acad. Sci, vol. 1027, pp. 269-285, 2004.
[17] Ahmed S., V.P. Carey, “Effects of surface orientation on the pool boiling heat transfer in water/2-propanol mixtures,” J. Heat Transfer, vol. 121,no.1, pp. 80-88, 1999.
[18] N.Zhang, “Innovative heat pipe systems using a new working fluid,” International Communications in Heat and Mass Transfer, vol. 28, issue 8,pp.1025-1033,2001.
[19] Abe Y., “Self-Rewetting Fluids,” Ann. N.Y. Acad. Sci, vol. 1077, pp. 650-667, 2006.
[20] N. d. Francescantonioa, R.Savinoa, Y.Abe, “New alcohol solutions for heat pipes: Marangoni effect and heat transfer enhancement,” Int.J. Heat Mass Transfer, vol. 51, issue 25-26, pp. 6199–6207, 2008.
[21] M Morovati, H Bindra, S Esaki, M Kawaji, “Enhancement of Pool Boiling and Critical Heat Flux in Self-Rewetting Fluids at Above Atmospheric Pressures,” in Proc. of 8th ASME-JSME Thermal Engineering Joint Conference, vol. 1, pp. 1849-1854, 2011.
[22] R. J. Moffat, “Describing the uncertainties in experimental results”, Experimental
Thermal Fluid Science, vol.1, no.1, pp. 3-17, 1988.
[23] S. Chen, P. Liu, Z. Zhu, Q. Liu, “Experimental Study on Surface Tension of Several Alcohol Aqueous Solutions,” Journal of Beijing Jiaotong University, vol. 32, no. 1, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61563-
dc.description.abstract本研究目的在於使用自再潤濕流體做為工作流體,毛細結構材質為燒結銅毛細結構,首次應用於迴路式熱管,並探討改變自再潤濕流體的濃度與成分,與工作流體為水作熱傳性能分析比較。過去學者發現將自再潤濕流體做為工作流體,可增強池沸騰、傳統熱管與無芯熱管的熱傳性能,因為自再潤濕流體其表面張力隨溫度變化呈現非線性關係,不同於純物質流體,表面張力只會隨著溫度遞增而遞減,當溫度增加到某特定溫度時,該水溶液的表面張力反而會隨著溫度增加而遞增,產生馬蘭哥尼流,可將冷態液體推送至加熱面,延緩乾涸的發生,提升臨界熱通量。
在探討改變丁醇水溶液的濃度,範圍2%~8%,對於迴路式熱管熱傳性能影響實驗中,研究結果顯示,6%的丁醇水溶液有最好之迴路式熱管性能,較工作流體為水,臨界熱負載增強了130%,系統總熱阻平均約降低了50%。
在探討改變自再潤濕流體的成份,其工作流體為水中添加丁醇、戊醇、己醇、
庚醇,濃度選用各醇類於水中在標準狀態下的最大溶解度,對於迴路式熱管熱傳性能影響實驗中,研究結果顯示,各醇類水溶液相較工作流體為水,皆可使迴路式熱管的系統總熱阻下降及操作溫度下降,提升臨界熱負載。而在各醇類水溶液的熱傳性能分析上,在操作溫度在90℃以前,其己醇水溶液相較於其他醇類水溶液,熱負載較大達到250W且系統總熱阻最低達到0.33℃/W;操作溫度超過90℃後,己醇水溶液已達到臨界熱負載,系統不能達穩態,而丁醇水溶液性能表現最好,臨界熱負載可達到350W,系統總熱阻最低達到0.32℃/W。因此,各醇類水溶液熱傳分析結果,丁醇水溶液有較大的操作溫度範圍、臨界熱負載最大且系統總熱阻最低,對於迴路式熱管有最佳的熱傳性能表現。
zh_TW
dc.description.abstractThe objective of this study is the application of self-rewetting fluid as the working fluid on loop heat pipe (LHP), with sintered copper as the chosen capillary structure material; this study also investigates the effect of using different components and concentrations of self-rewetting fluid as well as compares their heat transfer performances with that of water. Previous studies have show that using self-rewetting fluid as working fluid can enhance the heat transfer mechanisms of pool boiling,traditional heat pipe, and wickless heat pipe. Compared with using pure substance as working fluid, where the surface tension decreases linearly with increasing temperature, self-rewetting fluid’s surface tension has a non-linear relationship with temperature changes; therefore, at a certain temperature, the self-rewetting fluid’s surface tension increases with increasing temperature, resulting in the Marangoni effect, and the condensed liquid can be transported to the heating surface, delaying the occurrence of dryout and thus increasing the critical heat load.
Concerning the effect of varying the concentration of butanol aqueous solution on heat transfer performance of LHP, concentrations ranging from 2% to 8% is investigated. Experimental results show that 6% butanol aqueous solution results in the the best heat transfer performance of LHP; compared with that of water, the critical heat load is increased by 130% and the total thermal resistance is decreased on average by 50%.
Concerning the effect of changing the components of self-rewetting working fluid, the fluids considered are butanol, pentanol, hexanol, and heptanol, with the concentration of each as the maximum solubility concentration in water under standard conditions. Experimental results show that, compared with using water as working fluid, using self-rewetting fluid can allow the total thermal resistance of LHP system to decrease, increasing the critical heat load. Concerning the heat transfer performance of different self-rewetting fluids, under operating temperature of 90°C or lower, hexanol aqueous solution achieves the largest heat load of 250W and lowest total thermal resistance of 0.33°C/W; at operating temperatures higher than 90°C, hexanol aqueous solution has already reach the critical heat load, causing the system to be unstable, but butanol aqueous solution achieves the best results, with maximum critical heat load of 350W and minimum total thermal resistance of 0.32°C/W. Therefore, after analysis of the heat transfer performance of various self-rewetting fluids, butanol water solution has the largest operating temperature range, highest critical heat load, and lowest total thermal resistance, indicating that butanol water solution is most effective on heat transfer performance of LHP.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:05:57Z (GMT). No. of bitstreams: 1
ntu-102-R00522303-1.pdf: 3006331 bytes, checksum: a1432595cfed6d95f757833062d6c3c0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents學位論文口試委員會審定書 i
誌謝 iii
中文摘要 v
Abstract vii
目錄 ix
圖目錄 xiii
表目錄 xv
符號說明 xvii
第一章 緒論 1
1-1前言 1
1-1.1傳統熱管 1
1-1.2毛細泵吸環路 3
1-1.3迴路式熱管 4
1-1.4馬蘭哥尼效應 9
1-1.5自再潤濕流體 10
1-2文獻回顧 13
1-3研究目的 14
第二章 迴路式熱管的操作原理與限制 15
2-1迴路式熱管的操作基本原理 15
2-2系統的操作限制 17
2-2.1毛細限制 17
2-2.2啟動限制 18
2-2.3液體過冷限制 18
2-2.4補償室體積限制 19
2-3迴路式熱管的熱阻分析 20
2-3.1蒸發器熱阻 20
2-3.2蒸汽段熱阻 21
2-3.3冷凝器熱阻 22
第三章 實驗設備與方法 23
3-1實驗材料與製造設備 23
3-1.1實驗材料 23
3-1.2實驗藥品 24
3-1.3製造設備 24
3-2單孔徑毛細結構製作 27
3-3單孔徑毛細內部參數量測 28
3-3.1孔隙度 28
3-3.2孔徑分布 29
3-3.3滲透度 31
3-4迴路式熱管的測試設備與性能評估 33
3-4.1測試設備 33
3-4.2安裝步驟 35
3-4.1測試步驟 35
3-4.2性能評估 36
3-5誤差分析 37
3-6迴路式熱管的系統參數 38
第四章 實驗設計方法 39
4-1改變自再潤濕流體的濃度 39
4-2改變自再潤濕流體的成分 40
第五章 結果與討論 41
5-1自再潤濕流體的濃度對於迴路式熱管之熱傳性能比較 41
5-2自再潤濕流體的成分對於迴路式熱管之熱傳性能比較 45
第六章 結論與建議 47
6-1結論 47
6-2建議 48
參考文獻 49
附錄 52
附錄A 不準度分析 52
附錄B 熱電偶校正曲線 56
附錄C 實驗測試數據 59
附錄D 實驗設備與測試系統 62
 
dc.language.isozh-TW
dc.subject迴路式熱管zh_TW
dc.subject自再潤濕流體zh_TW
dc.subject熱傳增強zh_TW
dc.subjectLoop heat pipeen
dc.subjectSelf-rewetting fluiden
dc.subjectHeat transfer enhancementen
dc.title自再潤濕流體於迴路式熱管之應用研究zh_TW
dc.titleThe Application of Self-Rewetting Fluids on Loop Heat Pipeen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳聖俊,張淵仁
dc.subject.keyword迴路式熱管,自再潤濕流體,熱傳增強,zh_TW
dc.subject.keywordLoop heat pipe,Self-rewetting fluid,Heat transfer enhancement,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2013-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved