Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61557Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張?仁(Ching-Jin Chang) | |
| dc.contributor.author | Yan-Yun Wu | en |
| dc.contributor.author | 吳雁韻 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:05:47Z | - |
| dc.date.available | 2018-08-09 | |
| dc.date.copyright | 2013-08-09 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-02 | |
| dc.identifier.citation | 10. REFERENCES
1. Fan J, Yang X, Wang W, Wood WH, 3rd, Becker KG, et al. (2002) Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc Natl Acad Sci U S A 99: 10611-10616. 2. Dreyfuss G, Hentze M, Lamond AI (1996) From transcript to protein. Cell 85: 963-972. 3. Jacobson A, Peltz SW (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65: 693-739. 4. Wickens M, Anderson P, Jackson RJ (1997) Life and death in the cytoplasm: messages from the 3' end. Curr Opin Genet Dev 7: 220-232. 5. Peltz SW, Brewer G, Bernstein P, Hart PA, Ross J (1991) Regulation of mRNA turnover in eukaryotic cells. Crit Rev Eukaryot Gene Expr 1: 99-126. 6. Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2: 237-246. 7. Khabar KS (2005) The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. J Interferon Cytokine Res 25: 1-10. 8. Chen C-YA, Shyu A-B (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends in Biochemical Sciences 20: 465-470. 9. Bakheet T, Williams BR, Khabar KS (2006) ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 34: D111-114. 10. Lai WS, Carrick DM, Blackshear PJ (2005) Influence of nonameric AU-rich tristetraprolin-binding sites on mRNA deadenylation and turnover. J Biol Chem 280: 34365-34377. 11. Peng SS, Chen CY, Xu N, Shyu AB (1998) RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 17: 3461-3470. 12. Varnum BC, Ma QF, Chi TH, Fletcher B, Herschman HR (1991) The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat. Mol Cell Biol 11: 1754-1758. 13. DuBois RN, McLane MW, Ryder K, Lau LF, Nathans D (1990) A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem 265: 19185-19191. 14. Lai WS, Stumpo DJ, Blackshear PJ (1990) Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem 265: 16556-16563. 15. Taylor GA, Lai WS, Oakey RJ, Seldin MF, Shows TB, et al. (1991) The human TTP protein: sequence, alignment with related proteins, and chromosomal localization of the mouse and human genes. Nucleic Acids Res 19: 3454. 16. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271: 1081-1085. 17. Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15: 94-98. 18. Hall TM (2005) Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15: 367-373. 19. Blackshear PJ, Phillips RS, Ghosh S, Ramos SB, Richfield EK, et al. (2005) Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins. Biol Reprod 73: 297-307. 20. Ma Q, Wadleigh D, Chi T, Herschman H (1994) The Drosophila TIS11 homologue encodes a developmentally controlled gene. Oncogene 9: 3329-3334. 21. Ma Q, Herschman HR (1995) The yeast homologue YTIS11, of the mammalian TIS11 gene family is a non-essential, glucose repressible gene. Oncogene 10: 487-494. 22. Thompson MJ, Lai WS, Taylor GA, Blackshear PJ (1996) Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. Gene 174: 225-233. 23. Gomperts M, Pascall JC, Brown KD (1990) The nucleotide sequence of a cDNA encoding an EGF-inducible gene indicates the existence of a new family of mitogen-induced genes. Oncogene 5: 1081-1083. 24. Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001-1005. 25. Brewer BY, Malicka J, Blackshear PJ, Wilson GM (2004) RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin - Conformational changes coupled to the bipartite nature of AU-rich mRNA-destabilizing motifs. Journal of Biological Chemistry 279: 27870-27877. 26. Blackshear PJ, Lai WS, Kennington EA, Brewer G, Wilson GM, et al. (2003) Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. Journal of Biological Chemistry 278: 19947-19955. 27. Worthington MT, Pelo JW, Sachedina MA, Applegate JL, Arseneau KO, et al. (2002) RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. Journal of Biological Chemistry 277: 48558-48564. 28. Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE (2004) Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nature Structural & Molecular Biology 11: 257-264. 29. Lai WS, Carrick DM, Blackshear PJ (2005) Influence of nonameric AU-rich tristetraprolin-binding sites on mRNA deadenylation and turnover. Journal of Biological Chemistry 280: 34365-34377. 30. Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ (2000) Interactions of CCCH zinc finger proteins with mRNA - Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. Journal of Biological Chemistry 275: 17827-17837. 31. Stoecklin G, Colombi M, Raineri I, Leuenberger S, Mallaun M, et al. (2002) Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. Embo Journal 21: 4709-4718. 32. Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, et al. (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Molecular and Cellular Biology 19: 4311-4323. 33. Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, et al. (2008) A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 36: 3374-3388. 34. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, et al. (2005) Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12: 1054-1063. 35. Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11: 121-127. 36. Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19: 351-361. 37. Sandler H, Kreth J, Timmers HT, Stoecklin G (2011) Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39: 4373-4386. 38. Lai WS, Kennington EA, Blackshear PJ (2003) Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Molecular and Cellular Biology 23: 3798-3812. 39. Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes & Development 19: 351-361. 40. Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8: 9-22. 41. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8: 113-126. 42. Lykke-Andersen J (2002) Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22: 8114-8121. 43. van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, et al. (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21: 6915-6924. 44. Wang Z, Jiao X, Carr-Schmid A, Kiledjian M (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99: 12663-12668. 45. Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20: 905-915. 46. Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136: 761-773. 47. Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, et al. (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107: 451-464. 48. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, et al. (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120: 623-634. 49. Su YL, Wang SC, Chiang PY, Lin NY, Shen YF, et al. (2012) Tristetraprolin inhibits poly(A)-tail synthesis in nuclear mRNA that contains AU-rich elements by interacting with poly(A)-binding protein nuclear 1. PLoS One 7: e41313. 50. Liang J, Lei T, Song Y, Yanes N, Qi Y, et al. (2009) RNA-destabilizing factor tristetraprolin negatively regulates NF-kappaB signaling. J Biol Chem 284: 29383-29390. 51. Schichl YM, Resch U, Hofer-Warbinek R, de Martin R (2009) Tristetraprolin impairs NF-kappaB/p65 nuclear translocation. J Biol Chem 284: 29571-29581. 52. Ashburner BP, Westerheide SD, Baldwin AS, Jr. (2001) The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21: 7065-7077. 53. Carrick DM, Blackshear PJ (2007) Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Arch Biochem Biophys 462: 278-285. 54. Masuda K, Marasa B, Martindale JL, Halushka MK, Gorospe M (2009) Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging-Us 1: 681-698. 55. Varnum BC, Lim RW, Sukhatme VP, Herschman HR (1989) Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 4: 119-120. 56. Murphy JJ, Norton JD (1990) Cell-type-specific early response gene expression during plasmacytoid differentiation of human B lymphocytic leukemia cells. Biochim Biophys Acta 1049: 261-271. 57. Chen YL, Jiang YW, Su YL, Lee SC, Chang MS, et al. (2013) Transcriptional regulation of tristetraprolin by NF-kappaB signaling in LPS-stimulated macrophages. Mol Biol Rep 40: 2867-2877. 58. Brooks SA, Connolly JE, Rigby WF (2004) The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway. J Immunol 172: 7263-7271. 59. Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, et al. (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21: 6461-6469. 60. Tchen CR, Brook M, Saklatvala J, Clark AR (2004) The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. J Biol Chem 279: 32393-32400. 61. Fairhurst AM, Connolly JE, Hintz KA, Goulding NJ, Rassias AJ, et al. (2003) Regulation and localization of endogenous human tristetraprolin. Arthritis Res Ther 5: R214-225. 62. Smoak K, Cidlowski JA (2006) Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 26: 9126-9135. 63. Ishmael FT, Fang X, Galdiero MR, Atasoy U, Rigby WF, et al. (2008) Role of the RNA-binding protein tristetraprolin in glucocorticoid-mediated gene regulation. J Immunol 180: 8342-8353. 64. Lai WS, Stumpo DJ, Blackshear PJ (1990) Rapid Insulin-Stimulated Accumulation of an Messenger-Rna Encoding a Proline-Rich Protein. Journal of Biological Chemistry 265: 16556-16563. 65. Dubois RN, Mclane MW, Ryder K, Lau LF, Nathans D (1990) A Growth Factor-Inducible Nuclear-Protein with a Novel Cysteine Histidine Repetitive Sequence. Journal of Biological Chemistry 265: 19185-19191. 66. Lai WS, Thompson MJ, Blackshear PJ (1998) Characteristics of the intron involvement in the mitogen-induced expression of Zfp-36. J Biol Chem 273: 506-517. 67. Lai WS, Thompson MJ, Taylor GA, Liu Y, Blackshear PJ (1995) Promoter analysis of Zfp-36, the mitogen-inducible gene encoding the zinc finger protein tristetraprolin. J Biol Chem 270: 25266-25272. 68. Baou M, Jewell A, Murphy JJ (2009) TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009: 634520. 69. Taylor GA, Thompson MJ, Lai WS, Blackshear PJ (1995) Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J Biol Chem 270: 13341-13347. 70. Cao H, Deterding LJ, Blackshear PJ (2007) Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin. Expert Rev Proteomics 4: 711-726. 71. Chrestensen CA, Schroeder MJ, Shabanowitz J, Hunt DF, Pelo JW, et al. (2004) MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J Biol Chem 279: 10176-10184. 72. Carballo E, Cao H, Lai WS, Kennington EA, Campbell D, et al. (2001) Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway. J Biol Chem 276: 42580-42587. 73. Cao H (2004) Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications. Biochemistry 43: 13724-13738. 74. Cao H, Dzineku F, Blackshear PJ (2003) Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-alpha mRNA and serve as a substrate for mitogen-activated protein kinases. Arch Biochem Biophys 412: 106-120. 75. Sun L, Stoecklin G, Van Way S, Hinkovska-Galcheva V, Guo RF, et al. (2007) Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J Biol Chem 282: 3766-3777. 76. Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, et al. (2006) Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 26: 2399-2407. 77. Mackintosh C (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381: 329-342. 78. Brook M, Tchen CR, Santalucia T, McIlrath J, Arthur JSC, et al. (2006) Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Molecular and Cellular Biology 26: 2408-2418. 79. Phillips RS, Ramos SB, Blackshear PJ (2002) Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem 277: 11606-11613. 80. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, et al. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169: 871-884. 81. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, et al. (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23: 1313-1324. 82. Franks TM, Lykke-Andersen J (2007) TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev 21: 719-735. 83. Cougot N, Babajko S, Seraphin B (2004) Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165: 31-40. 84. Sauer I, Schaljo B, Vogl C, Gattermeier I, Kolbe T, et al. (2006) Interferons limit inflammatory responses by induction of tristetraprolin. Blood 107: 4790-4797. 85. Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, et al. (1996) A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4: 445-454. 86. Suzuki K, Nakajima H, Ikeda K, Maezawa Y, Suto A, et al. (2003) IL-4-Stat6 signaling induces tristetraprolin expression and inhibits TNF-alpha production in mast cells. J Exp Med 198: 1717-1727. 87. Twizere JC, Kruys V, Lefebvre L, Vanderplasschen A, Collete D, et al. (2003) Interaction of retroviral Tax oncoproteins with tristetraprolin and regulation of tumor necrosis factor-alpha expression. J Natl Cancer Inst 95: 1846-1859. 88. Rigby WF, Roy K, Collins J, Rigby S, Connolly JE, et al. (2005) Structure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function. J Immunol 174: 7883-7893. 89. Carballo E, Lai WS, Blackshear PJ (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95: 1891-1899. 90. Stoecklin G, Ming XF, Looser R, Moroni C (2000) Somatic mRNA turnover mutants implicate tristetraprolin in the interleukin-3 mRNA degradation pathway. Mol Cell Biol 20: 3753-3763. 91. Ogilvie RL, Abelson M, Hau HH, Vlasova I, Blackshear PJ, et al. (2005) Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J Immunol 174: 953-961. 92. Stoecklin G, Stoeckle P, Lu M, Muehlemann O, Moroni C (2001) Cellular mutants define a common mRNA degradation pathway targeting cytokine AU-rich elements. RNA 7: 1578-1588. 93. Stoecklin G, Tenenbaum SA, Mayo T, Chittur SV, George AD, et al. (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283: 11689-11699. 94. Gringhuis SI, Garcia-Vallejo JJ, van Het Hof B, van Dijk W (2005) Convergent actions of I kappa B kinase beta and protein kinase C delta modulate mRNA stability through phosphorylation of 14-3-3 beta complexed with tristetraprolin. Mol Cell Biol 25: 6454-6463. 95. Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pages G (2007) Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell 18: 4648-4658. 96. Sawaoka H, Dixon DA, Oates JA, Boutaud O (2003) Tristetraprolin binds to the 3'-untranslated region of cyclooxygenase-2 mRNA. A polyadenylation variant in a cancer cell line lacks the binding site. J Biol Chem 278: 13928-13935. 97. Yu H, Stasinopoulos S, Leedman P, Medcalf RL (2003) Inherent instability of plasminogen activator inhibitor type 2 mRNA is regulated by tristetraprolin. J Biol Chem 278: 13912-13918. 98. Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, et al. (2003) The Wnt/beta-catenin-->Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell 12: 1201-1211. 99. Frasca D, Landin AM, Alvarez JP, Blackshear PJ, Riley RL, et al. (2007) Tristetraprolin, a negative regulator of mRNA stability, is increased in old B cells and is involved in the degradation of E47 mRNA. J Immunol 179: 918-927. 100. Horner TJ, Lai WS, Stumpo DJ, Blackshear PJ (2009) Stimulation of polo-like kinase 3 mRNA decay by tristetraprolin. Mol Cell Biol 29: 1999-2010. 101. Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ (2006) Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 26: 9196-9208. 102. Carballo E, Gilkeson GS, Blackshear PJ (1997) Bone marrow transplantation reproduces the tristetraprolin-deficiency syndrome in recombination activating gene-2 (-/-) mice. Evidence that monocyte/macrophage progenitors may be responsible for TNFalpha overproduction. J Clin Invest 100: 986-995. 103. Stoecklin G, Gross B, Ming XF, Moroni C (2003) A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene 22: 3554-3561. 104. Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, et al. (2009) The mRNA-Destabilizing Protein Tristetraprolin Is Suppressed in Many Cancers, Altering Tumorigenic Phenotypes and Patient Prognosis. Cancer Research 69: 5168-5176. 105. Sanduja S, Kaza V, Dixon DA (2009) The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging (Albany NY) 1: 803-817. 106. Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, et al. (2009) The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 136: 1669-1679. 107. Johnson BA, Blackwell TK (2002) Multiple tristetraprolin sequence domains required to induce apoptosis and modulate responses to TNFalpha through distinct pathways. Oncogene 21: 4237-4246. 108. Lee SK, Kim SB, Kim JS, Moon CH, Han MS, et al. (2005) Butyrate response factor 1 enhances cisplatin sensitivity in human head and neck squamous cell carcinoma cell lines. Int J Cancer 117: 32-40. 109. Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, et al. (2010) Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 11: 717-724. 110. Iwanaga E, Nanri T, Mitsuya H, Asou N (2011) Mutation in the RNA binding protein TIS11D/ZFP36L2 is associated with the pathogenesis of acute leukemia. Int J Oncol 38: 25-31. 111. Ramos SB (2012) Characterization of DeltaN-Zfp36l2 mutant associated with arrest of early embryonic development and female infertility. J Biol Chem 287: 13116-13127. 112. Zhang L, Prak L, Rayon-Estrada V, Thiru P, Flygare J, et al. (2013) ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors. Nature. 113. Lin NY, Lin TY, Yang WH, Wang SC, Wang KT, et al. (2012) Differential expression and functional analysis of the tristetraprolin family during early differentiation of 3T3-L1 preadipocytes. Int J Biol Sci 8: 761-777. 114. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26: 3100-3112. 115. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4: 82-89. 116. Kollias G, Douni E, Kassiotis G, Kontoyiannis D (1999) On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 169: 175-194. 117. Kontoyiannis D, Kotlyarov A, Carballo E, Alexopoulou L, Blackshear PJ, et al. (2001) Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J 20: 3760-3770. 118. Marchant A, Bruyns C, Vandenabeele P, Ducarme M, Gerard C, et al. (1994) Interleukin-10 controls interferon-gamma and tumor necrosis factor production during experimental endotoxemia. Eur J Immunol 24: 1167-1171. 119. Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, et al. (2002) Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol 169: 6408-6416. 120. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, et al. (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A 103: 2274-2279. 121. Lin NY, Lin CT, Chang CJ (2008) Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 365: 69-74. 122. Kratochvill F, Machacek C, Vogl C, Ebner F, Sedlyarov V, et al. (2011) Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol Syst Biol 7: 560. 123. Tchen CR, Brook M, Saklatvala J, Clark AR (2004) The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. Journal of Biological Chemistry 279: 32393-32400. 124. Foster SL, Medzhitov R (2009) Gene-specific control of the TLR-induced inflammatory response. Clinical Immunology 130: 7-15. 125. Biswas SK, Lopez-Collazo E (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends in Immunology 30: 475-487. 126. del Fresno C, Garcia-Rio F, Gomez-Pina V, Soares-Schanoski A, Fernandez-Ruiz I, et al. (2009) Potent phagocytic activity with impaired antigen presentation identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated monocytes from cystic fibrosis patients. J Immunol 182: 6494-6507. 127. Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447: 972-978. 128. Mages J, Dietrich H, Lang R (2007) A genome-wide analysis of LPS tolerance in macrophages. Immunobiology 212: 723-737. 129. Draisma A, Pickkers P, Bouw MP, van der Hoeven JG (2009) Development of endotoxin tolerance in humans in vivo. Crit Care Med 37: 1261-1267. 130. Cok SJ, Morrison AR (2001) The 3'-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem 276: 23179-23185. 131. Liang J, Song W, Tromp G, Kolattukudy PE, Fu M (2008) Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One 3: e2880. 132. Kedar VP, Darby MK, Williams JG, Blackshear PJ (2010) Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85. PLoS One 5: e9588. 133. Johnson BA, Stehn JR, Yaffe MB, Blackwell TK (2002) Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms. J Biol Chem 277: 18029-18036. 134. Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10: 233. 135. Cobb EZaMH Functions and Modulation of MAP Kinase Pathways. Tocris Bioscience Scientific Review Series. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61557 | - |
| dc.description.abstract | 轉錄後調控主要是藉由mRNA穩定性或轉譯效能層面來調控。其中訊息傳遞所造成基因表現的改變有40-50%是由mRNA的穩定性所調控,其中藉由降解相關因子結合到mRNA三端未轉譯區(3’untranslated region,3’UTR)的多腺嘌呤-尿嘧啶序列(AU-rich element,ARE)所參與的mRNA降解就是其中一種機轉。這些mRNA通常是負責編碼即時反應的基因,像是細胞素,發炎因子,原致癌基因,轉錄因子。TTP (tristetraprolin)家族蛋白可以藉由鋅指結構結合在目標mRNA的ARE上促進mRNA的降解,進而影響到下游蛋白質的表現。TTP家族蛋白包含四個成員: TTP (ZFP36)、ZFP36L1、ZFP36L2、ZFP36L3,其中ZFP36L3只出現在齧齒類動物的胎盤跟胚外組織。目前對於ZFP36L2的基因調控及功能特徵尚未清楚,先前我們觀察到受脂多醣 (lipopolyssacharide,LPS)刺激的小鼠巨噬細胞RAW264.7中,Zfp36l2 mRNA的表現降低,在RNA pull-down assay中證實了藉由NFкB路徑誘發Ttp的表現並結合到Zfp36l2的ARE而導致在LPS刺激下Zfp36l2 mRNA的不穩定。此外我們也利用deletion construct研究ZFP36L2蛋白質上的功能分析,發現全長的蛋白質(WT Zfp36l2)均勻分布於細胞質中,去掉C端( Zfp36l2-N-TZF)或去掉N端(Zfp36l2-TZF-C)的蛋白會改變其在細胞內的位置,Zfp36l2-TZF-C偏向累積在核膜外圍,而Zfp36l2-N-TZF會在處理小體 (processing body)形成聚集的點狀物。用luciferase assay則發現Zfp36l2的N端是主要降低基因表現功能域。另外,我們利用lentivirus-mediated RNAi發現在小鼠巨噬細胞內MKP-1 (MAPK phosphatase-1)訊息RNA是ZFP36L2的目標之一,MKP-1在受到脂多醣 (LPS)刺激時會被誘導進而去抑制MAPK pathway而降低innate immune response,我們觀察到在短時間內細胞再受到LPS第二次刺激時Zfp36l2的表現量下降,而MKP-1的表現量更提升,可能使得下游inflammatory cytokine無法表現造成endotoxin tolerance。我們的結果顯示在脂多醣刺激的巨噬細胞中,Zfp36l2的表現量受到縝密的調控,以調節細胞的發炎反應。 | zh_TW |
| dc.description.abstract | Post-transcriptional control comprises regulation of the stability or translational efficiency of mRNA. Microarray analyses have revealed that 40-50% of changes in gene expression in response to cellular signals occur at the level of mRNA stability. Adenine and uridine -rich element mediated decay is one of several mechanisms the degrade mRNAs in the post-transcriptional regulations. AU-rich elements are always found in 3’UTR of a variety of transcripts that encode immediate response genes such as cytokines and inflammatory mediators, like proto-oncogenes and transcription factors. TTP family proteins bind to ARE of target mRNA by zinc finger domain and promote degradation. There are four members belong to TTP family: TTP (ZFP36), ZFP36L1, ZFP36L2 and ZFP36L3 which is specifically expressed in the placenta and extraembryonic tissues. Currently, the gene regulation and functional characterization of Zfp36l2 are unclear. We observed that Zfp36l2 mRNA expression was decreased in LPS-stimulated RAW264.7 cells. RNA pull down assay have improved that the downregulation of Zfp36l2 mRNA was caused by TTP binding to its ARE, which was induced by NFкB signaling pathway in LPS-stimulated RAW264.7 cells. On the other hand, we have identified two mRNA targets of Zfp36l2, Cox2 and Mkp-1 mRNA, in resting RAW264.7 cells. To investigate the molecular mechanism of Zfp36l2-specific Cox2 mRNA downregulation, we characterized the functional domains of Zfp36l2 by using some deletion constructs. In Immunofluorescence staining, WT- Zfp36l2 dispersed in the cytoplasm evenly, whereas Zfp36l2-N-TZF formed distinct foci and located at processing body, and Zfp36l2 –TZF-C tended to gather at the nuclear membranes. The luciferase reporter analysis showed that N-terminus of Zfp36l2 is required for its mRNA downregulation activity. In addition, we observed that the LPS treatment would lead to a lasting decrease of Zfp36l2 expression for more than 16 h, which might cause a higher induction of anti-inflammatory Mkp-1and IL-10 mRNA and a lower induction of pro-inflammatory cytokine TNFα in response to the second LPS treatment. Our results indicate that the expression levels of Zfp36l2 are tightly controlled to regulate intracellular inflammatory response in LPS-stimulated macrophages. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:05:47Z (GMT). No. of bitstreams: 1 ntu-102-R00b46015-1.pdf: 3214806 bytes, checksum: 92fd8f837370e14998753403d191846d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CONTENT
致謝 i 中文摘要 ii ABSTRACT iv CONTENT vi ABBREVIATION ix 1. INTRODUCTION 1 1.1 AU-rich element mediated mRNA decay 1 1.2 Tristetraprolin (TTP) family proteins 3 1.2.1 Sequence analysis of the TTP family proteins 3 1.2.2 The molecular mechanisms of TTP family proteins-mediated ARE-containing mRNA downregulation 4 1.2.3 Differential expression of TTP family proteins 7 1.2.4 Phosphorylation and subcellular localization of TTP family proteins 8 1.2.5 The Role of TTP Family Members in Disease 11 1.2.5.1 The anti-inflammatory role of TTP 11 1.2.5.2 The anti-cancer role of TTP family members 11 1.3 Zfp36l2 12 1.4 Innate immune response and TTP family proteins 13 2. EXPERIMENTAL RATIONALE 17 3. MATERIALS AND METHODS 19 3.1 Plasmid constructs 19 3.2 Cell culture 20 3.3 Preparation of whole cell extracts and cytosolic extracts 22 3.4 Transfection 22 3.5 Western blot assay and antibody 24 3.6 In vitro transcription 25 3.7 RNA pull-down assay 25 3.8 TRIzol RNA Isolation and reverse-transcription 26 3.9 Real-time PCR 27 3.10 Dual Luciferase Reporter Assay 27 3.11 Immunofluorescence staining and confocal microscopy 28 3.12 Statistical analysis 29 4. RESULTS 30 4.1 The expression level Zfp36l2 mRNA is down-regulated gradually due to the decreased stability in the period of LPS-stimulation in RAW264.7 cells. 30 4.2 The NFкB pathway is involved in downregulation of Zfp36l2 mRNA 30 4.3 TTP regulates the stability of Zfp36l2 mRNA through binding to Zfp36l2 ARE site 31 4.4 Zfp36l2 downregulates Cox-2 transcriptionally and post-transcriptionally 32 4.5 The functional domain of Zfp36l2 is located on N-terminus 33 4.6 TTP family proteins involve in innate immune suppression by regulating Mkp-1 expression 34 5. DISCUSSION 36 6. FIGURE 44 FIGURE 1. The expression level and half-life of Zfp36l2 mRNA is downregulated in the period of LPS-stimulation in RAW264.7 cells. 44 FIGURE 2. The NFкB pathway is involved in downregulation of Zfp36l2 mRNA. 47 FIGURE 3. TTP regulates the stability of Zfp36l2 mRNA through binding to Zfp36l2 ARE site. 50 FIGURE 4. ZFP36L2 down-regulates Cox-2 transcriptionally and post-transcriptionally. 53 FIGURE 5. The functional domain of Zfp36l2 is located on N-terminus. 55 FIGURE 6. TTP family proteins involve in innate immune suppression by regulating Mkp-1 expression. 58 7. TABLE 59 Table 1. Primers for PCR 59 Table 2. Primers for real-time PCR 60 8. SUPPLEMENTAL 61 FIGURE S1. mRNA expression profiles of TTP family members in LPS-stimulated RAW264.7 cells for 0, 15, 30, 60,120 minutes. (From Kuan-Ting Wang) 61 FIGURE S2. COX-2 mRNA is the specific target of Zfp36l2 compared to Zfp36l1. 63 9. APPENDIX 64 Appendix 1. Human TTP family members and reported mRNA targets of the TTP family. 64 Appendix 2. MAP Kinase Networks. 65 10. REFERENCES 66 | |
| dc.language.iso | en | |
| dc.subject | 絲裂原活化蛋白激酶 | zh_TW |
| dc.subject | 先天性免疫反應 | zh_TW |
| dc.subject | mRNA降解 | zh_TW |
| dc.subject | 富AU元件 | zh_TW |
| dc.subject | 鋅指蛋白36類型2 (Zfp36l2) | zh_TW |
| dc.subject | 內毒素耐受性 | zh_TW |
| dc.subject | 鋅指蛋白36 (TTP) | zh_TW |
| dc.subject | Zfp36l2 | en |
| dc.subject | endotoxin tolerance | en |
| dc.subject | mitogen-activated protein kinases | en |
| dc.subject | Innate immune response | en |
| dc.subject | mRNA decay | en |
| dc.subject | AU-rich element | en |
| dc.subject | Tristetraprolin | en |
| dc.title | 小鼠巨噬細胞RAW264.7在脂多醣刺激下Zfp36l2訊息核醣核酸受Tristetraprolin蛋白負調節之研究及Zfp36l2蛋白之功能分析 | zh_TW |
| dc.title | Downregulation of Zfp36l2 mRNA by TTP and functional characterization of Zfp36l2 in LPS-stimulated mouse macrophage RAW264.7 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),朱善德(Sin-Tak Chu),徐駿森(Chun-Hua Hsu) | |
| dc.subject.keyword | 鋅指蛋白36 (TTP),鋅指蛋白36類型2 (Zfp36l2),富AU元件,mRNA降解,先天性免疫反應,絲裂原活化蛋白激酶,內毒素耐受性, | zh_TW |
| dc.subject.keyword | Tristetraprolin,Zfp36l2,AU-rich element,mRNA decay,Innate immune response,mitogen-activated protein kinases,endotoxin tolerance, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| Appears in Collections: | 生化科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 3.14 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
