Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6150
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor萬本儒(Ben-Zu Wan)
dc.contributor.authorHong-Kang Tianen
dc.contributor.author田弘康zh_TW
dc.date.accessioned2021-05-16T16:21:57Z-
dc.date.available2018-08-23
dc.date.available2021-05-16T16:21:57Z-
dc.date.copyright2013-08-23
dc.date.issued2013
dc.date.submitted2013-07-25
dc.identifier.citation[1]. 萬其正, '石化工業製程技術 2004: 高立圖書有限公司. 90-100.
[2]. 陶氏化學. http://www.dow.com/propyleneoxide/about/index.htm.
[3]. M.P. Gonzalez-Marcos, et al., 'Designing process-specific catalysts for cleaner, more efficient processes'. Chimica Oggi-Chemistry Today, 2010. 28(5): p. 58-62.
[4]. Y.X. Miao, et al., 'Synthesis of Mo-HMS and Its Catalytic Performance in Liquid Epoxidation of Propylene'. Chinese Journal of Catalysis, 2012. 33(4): p. 711-716.
[5]. 劉勇成, 李國禎, '環氧丙烷合成之研究': 東海大學化學工程研究所碩士論文, 2009.
[6]. T.A. Nijhuis, et al., 'The production of propene oxide: Catalytic processes and recent developments'. Industrial & Engineering Chemistry Research, 2006. 45(10): p. 3447-3459.
[7]. W.F. Richey, 'Encyclopedia of Chemical Technology, 4th Edition. Chlorohydrins. Vol. 6, 1994, Kirk-Othmer. 140.
[8]. M. ISHINO, 'Development of New Propylene Oxide Process'. 16th Saudi Arabia•Japan Joint Symposium, 2006.
[9]. Y.X. Miao, et al., 'The molybdenum species of MoO(3)/SiO(2) and their catalytic activities for the epoxidation of propylene with cumene hydroperoxide'. Journal of Industrial and Engineering Chemistry, 2010. 16(1): p. 45-50.
[10]. Y.J. Ren, et al., 'Selective epoxidation of propylene to propylene oxide with H-2 and O-2 over Au/Ti-MWW catalysts'. Pure and Applied Chemistry, 2012. 84(3): p. 561-578.
[11]. Y.O. Toshio Yamamura, Isao Ouchi, Nobuteru Oda, Mitsuyoshi Yamazaki, Yukio Nishiyama, 'Process for purifying crude olefin oxides', US patent 4,243,492, 1981.
[12]. K.T. Li and I.C. Chen, 'Epoxidation of propylene on Ti/SiO2 catalysts prepared by chemical vapor deposition'. Industrial & Engineering Chemistry Research, 2002. 41(16): p. 4028-4034.
[13]. K.T. Li and C.C. Lin, 'Propylene epoxidation over Ti/MCM-41 catalysts prepared by chemical vapor deposition'. Catalysis Today, 2004. 97(4): p. 257-261.
[14]. 李國禎, '製備環氧丙烷之方法', 中華民國專利第163084號, 2003.
[15]. T. Seo and J. Tsuji, 'Process for producing propylene oxide', US Patent 6,646,139, 2003.
[16]. K.T. Li, et al., 'Preparation of Ti/SiO2 catalysts by chemical vapor deposition method for olefin epoxidation with cumene hydroperoxide'. Applied Catalysis a-General, 2006. 301(1): p. 59-65.
[17]. A. Tullo, 'BASF, Dow plan more propylene oxide units'. Chemical & Engineering News, 2005. 83(44): p. 7-7.
[18]. 'New Method for Manufacturing Propylene Oxide Eliminates Undesirable Side Products', in Chem. Eng. Prog., 2006.
[19]. Y. Dubosc, 'BASF, Dow and Solvay unite for the production of propylene oxide in an environment-friendly factory'. Actualite Chimique, 2006: p. 152-152.
[20]. P.L. Short, 'BASF, DOW OPEN NOVEL PROPYLENE OXIDE PLANT'. Chemical & Engineering News, 2009. 87(11): p. 21-21.
[21]. Q.L. Chen and E.J. Beckman, 'One-pot green synthesis of propylene oxide using in situ generated hydrogen peroxide in carbon dioxide'. Green Chemistry, 2008. 10(9): p. 934-938.
[22]. R. Meiers and W.F. Holderich, 'Epoxidation of propylene and direct synthesis of hydrogen peroxide by hydrogen and oxygen'. Catalysis Letters, 1999. 59(2-4): p. 161-163.
[23]. E.J. Beckman, 'Production of H2O2 in CO2 and its use in the direct synthesis of propylene oxide'. Green Chemistry, 2003. 5(3): p. 332-336.
[24]. M.F. Fellah and I. Onal, 'Epoxidation of Propylene on a Ag14O9 Cluster Representing Ag2O (001) Surface: A Density Functional Theory Study'. Catalysis Letters, 2012. 142(1): p. 22-31.
[25]. Q.W. Jin, et al., 'Propylene Epoxidation by Dioxygen over Catalyst Copper-loaded TiO(2)'. Chemical Research in Chinese Universities, 2011. 27(5): p. 866-869.
[26]. M. Akimoto, et al., 'KINETIC AND ADSORPTION STUDIES ON VAPOR-PHASE CATALYTIC-OXIDATION OF OLEFINS OVER SILVER'. Journal of Catalysis, 1982. 76(2): p. 333-344.
[27]. T. Hayashi, et al., 'Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2 Catalysts in the Presence of Oxygen and Hydrogen'. Journal of Catalysis, 1998. 178(2): p. 566-575.
[28]. A. Seubsai, et al., 'New Catalytic Materials for the Direct Epoxidation of Propylene by Molecular Oxygen'. Chemcatchem, 2011. 3(1): p. 174-179.
[29]. A.C. Kizilkaya, et al., 'Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study'. Chemical Physics Letters, 2010. 487(4-6): p. 183-189.
[30]. G.W. Zhan, et al., 'Vapor-Phase Propylene Epoxidation with H(2)/O(2) over Bioreduction Au/TS-1 Catalysts: Synthesis, Characterization, and Optimization'. Industrial & Engineering Chemistry Research, 2011. 50(15): p. 9019-9026.
[31]. T. Miyaji, et al., 'Selective oxidation of propylene to propylene oxide over Ti-MCM-41 supporting metal nitrate'. Catalysis Today, 2001. 71(1-2): p. 169-176.
[32]. B. Taylor, et al., 'The effect of mesoporous scale defects on the activity of Au/TS-1 for the epoxidation of propylene'. Catalysis Today, 2007. 123(1-4): p. 50-58.
[33]. W.S. Lee, et al., 'Differences in Catalytic Sites for CO Oxidation and Propylene Epoxidation on Au Nanoparticles'. Acs Catalysis, 2011. 1(10): p. 1327-1330.
[34]. T. Thommes, et al., 'Catalytic vapour phase epoxidation of propene with nitrous oxide as an oxidant: I. Reaction network and product distribution'. Applied Catalysis A: General, 2007. 318: p. 160-169.
[35]. Q. Zhang, et al., 'Iron-catalyzed propylene epoxidation by nitrous oxide: Toward understanding the nature of active iron sites with modified Fe-MFI and Fe-MCM-41 catalysts'. Journal of Catalysis, 2006. 239(1): p. 105-116.
[36]. S. Yang, et al., 'Iron-catalyzed propylene epoxidation by nitrous oxide: Effect of boron on structure and catalytic behavior of alkali metal ion-modified FeOx/SBA-15'. Journal of Catalysis, 2008. 254(2): p. 251-262.
[37]. J.H. Huang and M. Haruta, 'Gas-phase propene epoxidation over coinage metal catalysts'. Research on Chemical Intermediates, 2012. 38(1): p. 1-24.
[38]. J.H. Huang, et al., 'Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters'. Angewandte Chemie-International Edition, 2009. 48(42): p. 7862-7866.
[39]. O.P. Vaughan, et al., 'Copper as a selective catalyst for the epoxidation of propene'. Journal of Catalysis, 2005. 236(2): p. 401-404.
[40]. W. Su, et al., 'A molecular insight into propylene epoxidation on Cu/SiO2catalysts using O2 as oxidant'. Journal of Catalysis, 2009. 268(1): p. 165-174.
[41]. W. Zhu, et al., 'Cu (I)-catalyzed epoxidation of propylene by molecular oxygen'. The Journal of Physical Chemistry C, 2008. 112(20): p. 7731-7734.
[42]. M. Ojeda and E. Iglesia, 'Catalytic epoxidation of propene with H2O–O2 reactants on Au/TiO2'. Chemical Communications, 2009(3): p. 352-354.
[43]. S. Lee and L. Molina, 'MJ Lo pez, JA Alonso, B. Hammer, B. Lee, S. Seifert, RE Winans, JW Elam, MJ Pellin and S. Vajda'. Angew. Chem., Int. Ed, 2009. 48: p. 1467-1471.
[44]. J. Lu, et al., 'Epoxidation of propylene on NaCl-modified silver catalysts with air as the oxidant'. Applied Catalysis A: General, 2002. 237(1): p. 11-19.
[45]. A. Takahashi, et al., 'Effects of added 3d transition-metals on Ag-based catalysts for direct epoxidation of propylene by oxygen'. Applied Catalysis A: General, 2005. 294(1): p. 34-39.
[46]. J. Lu, et al., 'Direct propylene epoxidation over modified Ag/CaCO3 catalysts'. Applied Catalysis A: General, 2006. 302(2): p. 283-295.
[47]. R. Wang, et al., 'Effects of preparation conditions and reaction conditions on the epoxidation of propylene with molecular oxygen over Ag/TS-1 in the presence of hydrogen'. Applied Catalysis A: General, 2004. 261(1): p. 7-13.
[48]. X. Guo, et al., 'Effects of preparation method and precipitator on the propylene epoxidation over Ag/TS-1 in the gas phase'. Catalysis Today, 2004. 93: p. 211-216.
[49]. R. Wang, et al., 'Gas-phase epoxidation of propylene over Ag/Ti-containing catalysts'. Catalysis Today, 2004. 93: p. 217-222.
[50]. C. Wang, et al., 'Gas-phase propylene epoxidation over Ag/TS-1 prepared in W/O microemulsion: effects of the molar ratio of water to surfactant and the reaction temperature'. Catalysis Letters, 2004. 96(1-2): p. 79-85.
[51]. W.S. Lee, et al., 'Probing the gold active sites in Au/TS-1 for gas-phase epoxidation of propylene in the presence of hydrogen and oxygen'. Journal of Catalysis, 2012.
[52]. J.Q. Chen, et al., 'Switching off propene hydrogenation in the direct epoxidation of propene over gold-titania catalysts'. Journal of Catalysis, 2012. 285(1): p. 324-327.
[53]. J.H. Huang, et al., 'Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O-2 and H-2'. Applied Catalysis B-Environmental, 2010. 95(3-4): p. 430-438.
[54]. 洪健雄, 萬本儒, '製備金鐵觸媒於Y型沸石並應用於一氧化碳氧化之研究': 國立台灣大學化學工程學研究所•碩士論文, 2012.
[55]. 陳怡秀, 萬本儒, 'Au/Y 製備及催化一氧化碳氧化反應之熱傳效應探討', 國立台灣大學化學工程學研究所•碩士論文, 2009.
[56]. C.N. Kuo, et al., 'Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air'. Catalysis Today, 2007. 122(3-4): p. 270-276.
[57]. W.S. Lee, et al., 'Maintaining catalytic activity of Au/TiO2 during the storage at room temperature'. Catalysis Communications, 2007. 8(11): p. 1604-1608.
[58]. E.E. Stangland, et al., 'Characterization of gold–titania catalysts via oxidation of propylene to propylene oxide'. Journal of Catalysis, 2000. 191(2): p. 332-347.
[59]. T. Nijhuis and B. Weckhuysen, 'The direct epoxidation of propene over gold–titania catalysts—A study into the kinetic mechanism and deactivation'. Catalysis Today, 2006. 117(1): p. 84-89.
[60]. C. Qi, et al., 'Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature'. Applied Catalysis A: General, 2003. 253(1): p. 75-89.
[61]. M. Kapoor, et al., 'Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane'. Chemical Communications, 2002(23): p. 2902-2903.
[62]. H. Yang, et al., 'Superior performance of gold supported on titanium-containing hexagonal mesoporous molecular sieves for gas-phase epoxidation of propylene with use of H2 and O2'. The Journal of Physical Chemistry C, 2009. 113(19): p. 8186-8193.
[63]. A.K. Sinha, et al., 'A Three‐Dimensional Mesoporous Titanosilicate Support for Gold Nanoparticles: Vapor‐Phase Epoxidation of Propene with High Conversion'. Angewandte Chemie International Edition, 2004. 43(12): p. 1546-1548.
[64]. E. Sacaliuc-Parvulescu, et al., 'Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene'. Journal of Catalysis, 2008. 259(1): p. 43-53.
[65]. T.A. Nijhuis, et al., 'Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports'. Industrial & Engineering Chemistry Research, 1999. 38(3): p. 884-891.
[66]. S.T. Oyama, et al., 'Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor'. Journal of Catalysis, 2008. 257(1): p. 1-4.
[67]. B. Taylor, et al., 'The effect of mesoporous scale defects on the activity of Au/TS-1 for the epoxidation of propylene'. Catalysis Today, 2007. 123(1): p. 50-58.
[68]. J. Huang, et al., 'Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2'. Applied Catalysis B: Environmental, 2010. 95(3): p. 430-438.
[69]. L. Cumaranatunge and W.N. Delgass, 'Enhancement of Au capture efficiency and activity of Au/TS-1 catalysts for propylene epoxidation'. Journal of Catalysis, 2005. 232(1): p. 38-42.
[70]. E.E. Stangland, et al., 'Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment'. The Journal of Physical Chemistry B, 2005. 109(6): p. 2321-2330.
[71]. B. Taylor, et al., 'Gas-phase epoxidation of propylene over small gold ensembles on TS-1'. Applied Catalysis a-General, 2005. 291(1-2): p. 188-198.
[72]. J.Q. Chen, et al., 'Kinetic study of propylene epoxidation with H-2 and O-2 over Au/Ti-SiO2 in the explosive regime'. Faraday Discussions, 2011. 152: p. 321-336.
[73]. M. Haruta, et al., 'Selective oxidation of propylene over gold deposited on titanium-based oxides'. Research on Chemical Intermediates, 1998. 24(3): p. 329-336.
[74]. J.H. Huang, et al., 'Propene epoxidation with oxygen over gold clusters: Role of basic salts and hydroxides of alkalis'. Applied Catalysis a-General, 2012. 435: p. 115-122.
[75]. J. Lu, et al., 'Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2 : Effect of Au particle size'. Journal of Catalysis, 2007. 250(2): p. 350-359.
[76]. A.M. Joshi, et al., 'CO adsorption on pure and binary-alloy gold clusters: A quantum chemical study'. The Journal of chemical physics, 2006. 125: p. 194707.
[77]. A.M. Joshi, et al., 'Mechanistic Implications of Au n/Ti-Lattice Proximity for Propylene Epoxidation'. The Journal of Physical Chemistry C, 2007. 111(22): p. 7841-7844.
[78]. J.H. Huang, et al., 'Propene epoxidation with O-2 and H-2: Identification of the most active gold clusters'. Journal of Catalysis, 2011. 278(1): p. 8-15.
[79]. W.S. Lee, et al., 'Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene'. Journal of Catalysis, 2012. 287: p. 178-189.
[80]. J. M., et al., 'Chemical separations and measurements : theory and practice of analytical chemistry 1974, Philadelphia: Saunders. 731.
[81]. D.G. Huang, et al., 'Ethanol-assistant synthesis of TS-1 containing no extra-framework Ti species'. Catalysis Today, 2010. 158(3-4): p. 510-514.
[82]. T. Tatsumi, 'Effect of potassium on the catalytic activity of TS-1'. Applied Catalysis A: General, 2000. 200(1): p. 125.
[83]. M. Sasidharan, et al., 'Fabrication, characterization and catalytic oxidation of propylene over TS-1/Au membranes'. Chemical Engineering Science, 2012. 75: p. 250-255.
[84]. X.X. Wang, et al., 'Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization'. Microporous and Mesoporous Materials, 2011. 142(2-3): p. 494-502.
[85]. R.B. Khomane, et al., 'Synthesis, characterization and catalytic performance of titanium silicalite-1 prepared in micellar media'. Materials Chemistry and Physics, 2002. 76(1): p. 99-103.
[86]. Y. Zuo, et al., 'Characterization and Catalytic Performance of Deactivated and Regenerated TS-1 Extrudates in a Pilot Plant of Propene Epoxidation'. Industrial & Engineering Chemistry Research, 2012. 51(32): p. 10586-10594.
[87]. M.A. Camblor, et al., 'SYNTHESIS OF TITANOALUMINOSILICATES ISOMORPHOUS TO ZEOLITE BETA, ACTIVE AS OXIDATION CATALYSTS'. Zeolites, 1993. 13(2): p. 82-87.
[88]. J. Sudhakar Reddy and R. Kumar, 'Synthesis, characterization, and catalytic properties of a titanium silicate, TS-2, with MEL structure'. Journal of Catalysis, 1991. 130(2): p. 440-446.
[89]. W. Fan, et al., 'Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species'. Journal of the American Chemical Society, 2008. 130(31): p. 10150-10164.
[90]. R.J. Davis and Z. Liu, 'Titania-silica: a model binary oxide catalyst system'. Chemistry of materials, 1997. 9(11): p. 2311-2324.
[91]. A.A. Widati and D. Prasetyoko, 'SYNTHESIS AND CHARACTERIZATION OF MESOPOROUS TS-1: EFFECT OF THE HYDROTHERMAL CRYSTALLIZATION TIME TO THE SOLID STRUCTURE'.
[92]. L. LeNoc, et al., 'Characterization of two different framework titanium sites and quantification of extra-framework species in TS-1 silicalites. 11th International Congress on Catalysis - 40th Anniversary, Pts a and B, ed. J.W. Hightower, et al. Vol. 101, 1996, Amsterdam: Elsevier Science Publ B V. 611-620.
[93]. G. Mul, et al., 'Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: An in situ FT-IR study'. Journal of Catalysis, 2001. 201(1): p. 128-137.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6150-
dc.description.abstract本研究以Au/TS-1觸媒催化丙烯氣體進行環氧化反應,反應器進口通入O2及H2,奈米金顆粒催化兩氣體反應生成H2O2,然後以TS-1上的活性位置,催化H2O2氧化丙烯形成環氧丙烷。TS-1沸石擔體是由水熱法合成,並以沉澱沉積法擔載奈米金粒子。本研究目的為透過減少TS-1的顆粒大小,縮短內部孔徑長度,避免反應物因為在TS-1孔洞中的滯留時間過長而過度氧化,進而提高環氧丙烷生成比例;然而,較小尺度的TS-1顆粒卻存在極為顯著的團聚(aggregation)情況,因此,透過Tween 80的添加改善顆粒間的聚集現象,提高內部質傳,並進一步探討對Au/TS-1催化活性的影響。
本研究內容主要針對以下四個部分做探討:(1)探討金擔載量和GHSV (Gas Hourly Space Velocity)的變化對Au/TS-1活性的影響,以及在不同金擔載量下的金粒子活性差異。(2)透過改變水熱溶液中TPAOH用量,製備小顆粒的TS-1擔體,探討TS-1尺度差異對催化活性的影響。(3)透過硝酸預處理程序清除擔體表面Octahedral的Ti。(4)添加Tween 80改善擔體顆粒聚集的現象。
由第一部分研究結果顯示,金擔載量越高 (高於0.2 wt%),越容易發生全氧化反應生成CO2,不利於環氧丙烷的生成;另一方面,當金擔載量低於0.2 wt%,金粒子的活性皆很相近。藉由降低GHSV,能提高丙烯的轉化率,進而提高環氧丙烷的產率,但當GHSV低於11200 mLkgcat-1h-1後,環氧丙烷的產率即無法再增加,因為GHSV較低,代表氣體滯留時間較長,產物較易進行全氧化反應生成CO2,造成環氧丙烷產率無法再提升。本研究發現在金擔載量0.2 wt%、GHSV=11200 mLkgcat-1h-1時,Au/TS-1觸媒能有最佳的產率6.26 %。
在第二部分,將水熱溶液中TPAOH的含量提高2倍,即可製備出顆粒大小僅原本一半的TS-1擔體 (命名為TS-1-2T),由鑑定結果顯示,TS-1-2T之MFI結構、表面積、孔洞體積、骨架內Ti含量和整體Si/Ti莫耳比等性質,相較於TS-1沒有明顯差異,但是Octehedral Ti含量卻提高。在活性測試中, Au/TS-1-2T的環氧丙烷選擇率明顯較Au/TS-1來得低,很可能是因為表面上有較多的Ti以Octahedal形式存在,是促使副反應發生的活性位置,因此產生較多副產物。
在第三部分,為減少TS-1-2T中Octahedral的Ti含量,以2M硝酸在80℃高溫下清洗擔體 (命名TS-1-2T-HNO3)。由鑑定結果顯示,硝酸預處理程序確實有效降低擔體內部Octahedral的Ti含量。經由反應活性測試,在相同的丙烯轉化率下,Au/TS-1-2T-HNO3的環氧丙烷選擇率和氫氣使用效率皆明顯優於Au/TS-1和Au/TS-1-2T,且幾乎沒有副產物Acrolein的生成,顯示octahedral Ti的移除確實可有效避免副產物的產生,此外,這也意謂較短的擔體內通道能有效提升環氧丙烷的選擇率。然而,由於Au/TS-1-2T-HNO3的丙烯轉化率較低,造成其環氧丙烷產率仍低於Au/TS-1觸媒,透過降低GHSV(提高反應物於Au/ TS-1-2T-HNO3內部滯留時間),不僅無法有效提升丙烯轉化率,環氧丙烷選擇率亦隨之減少。目前Au/TS-1-2T-HNO3的環氧丙烷選擇率雖優於Au/TS-1,但產率仍低,因此如何有效提升Au/TS-1-2T-HNO3的丙烯轉化率將是下一階段的研究目標。
在第四部分,透過Tween 80的添加,可以有效改善擔體顆粒聚集的現象,將200μm左右的顆粒團聚切割成50μm左右的團聚,並且增加顆粒之間的孔隙度,使得反應物較易接觸到觸媒表面。從實驗結果發現,有加Tween 80的觸媒,丙烯的轉化率都較低,但副產物的生成量皆明顯較高。由於Tween 80在鍛燒過程中燃燒造成熱量大量釋放,可能導致擔體內部tetrahedral Ti被移除於結構之外,形成defect sites,進而促使副產物的生成。整體而言,雖然添加Tween 80能有效改善顆粒團聚的問題,但觸媒表面上的defect sites將更嚴重的影響觸媒活性。
zh_TW
dc.description.abstractThe research is mainly about one-step synthesis of propylene oxide from propene in the presence of oxygen and hydrogen, with Au/TS-1 as catalysts. The TS-1 zeolite is synthesized by hydrothermal method, followed by deposition-precipitation method to load gold nano-particles onto TS-1. In order to avoid complete oxidation of propylene, the objective of this study is to decrease the space time of reactants inside the channels of zeolite by reducing the particle sizes of TS-1. However, the aggregation of smaller TS-1 is severe. Therefore, Tween 80 is added to increase porosity among TS-1 particles and promote mass transfer inside the zeolite support.
The result of this study is divided into the following parts: (1) The effect of gold loading and GHSV (Gas Hourly Space Velocity) on the activity of Au/TS-1 catalysts. (2) Preparation of TS-1 with smaller sizes by adjusting the TPAOH amount in hydrothermal solution. (3) Elimination of octahedral Ti from the surface of TS-1 support by HNO3 pretreatment. (4) Addition of Tween 80 to decrease the aggregation of TS-1 particles.
From the experimental results of the first part, as gold loading became higher than 0.2%, less amount of propylene oxide was produced. In addition, more amounts of reactants were completely oxidized to CO2; as gold loading was less than 0.2 wt%, the activities of Au/TS-1 maintained almost unchanged with the decreasing of gold loadings. On the other hand, the propylene conversion as well as the yield of propylene oxide raised as GHSV decreased. However, as GHSV became lower than 11200 mLkgcat-1h-1, the yield of propylene oxide could not increase anymore. The reason is that propylene tended to completely oxidized as the contact time between the reactant gas and Au/TS-1 became longer. The best propylene oxide yield 6.26% could be achieved when the gold loading was 0.2 wt% and the GHSV was 11200 mLkgcat-1h-1.
In the second part of our research, TS-1 with sizes only half of fresh one could be prepared by increasing two times amount of TPAOH in the hydrothermal sol-gel solution (designated as TS-1-2T). Based on the characterization results, the properties of MFI structure, surface area, pore volume, ratio of framework Ti as well as bulk Si/Ti molar ratio maintained unchanged. However, the increase of Octahedral Ti content was significant, which is considered as active sites for side reaction. In the activity test, the selectivity of propylene oxide of Au/TS-1-2T was apparently lower than that of Au/TS-1.
In the third part of our research, HNO3 pretreatment was used to eliminate octahedral Ti contents. The as-pretreated support is designated as TS-1-2T-HNO3. From the activity result, the Au/TS-1-2T-HNO3 catalyst possessed much better propylene oxide selectivity and H2 efficiency than Au/TS-1 catalyst under the same conversion of propene, which suggested that the shorter channel of TS-1-2T was contributive to partial oxidation of propylene. However, the yield of propylene oxide was still smaller than Au/TS-1, owing to low propylene conversion. By decreasing GHSV, not only the propylene conversion but also the selectivity of propylene oxide could not be effectively promoted. Therefore, although Au/TS-1-2T-HNO3 possessed better propylene oxide selectivity than Au/TS-1, further works is required to improve the conversion of propene.
In the last part, the addition of Tween 80 could successfully reduce the aggregation of TS-1 particles. From the characterization results, some cracks were found and aggregation of particles (~200 μm) was divided into smaller parts, together with more amount of porosity formed among particles. However, the activity results showed that the catalysts with addition of Tween 80 possessed lower propene conversion, accompanied with higher selectivity of side products. There might have been some defect sites formed during calcinations process, caused by enormous heat release from the combustion of Tween 80. Therefore, even though the addition of Tween 80 could reduce the aggregation problem among particles and improve mass transfer inside catalysts, the formation of defect sites might be more deleterious to activity of catalysts.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:21:57Z (GMT). No. of bitstreams: 1
ntu-102-R00524057-1.pdf: 4150781 bytes, checksum: af7865df9ff97b076d2907e6cb518070 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 v
Abstract vii
目錄 x
圖目錄 xiv
表目錄 xvi
第一章 緒論 - 1 -
1.1 研究背景與動機 - 1 -
第二章 文獻回顧與實驗設計 - 2 -
2.1 生產環氧丙烷方法 - 4 -
2.1.1 氯醇法 - 4 -
2.1.2 共氧化法 - 5 -
2.1.3 CHPO (Cumene hydroperoxide)法 - 7 -
2.1.4 HPPO (Hydrogen peroxide propylene oxide)法 - 9 -
2.1.5 In-Situ Generated Hydroperoxide Method - 10 -
2.1.6 直接氣相氧化法 (Direct gas oxidation) - 11 -
2.2 直接氣相氧化法所使用氣體和觸媒之整理 - 14 -
2.3 以O2/H2混合氣體和奈米金觸媒生產環氧丙烷 - 15 -
2.3.1 丙烯轉化率 - 16 -
2.3.2 環氧丙烷選擇率 - 17 -
2.3.3 氫氣使用效率 - 17 -
2.3.4 最有活性的金粒子大小 - 18 -
2.4 研究構想與設計 - 19 -
第三章 實驗與鑑定方法 - 21 -
3.1 實驗藥品與器材 - 21 -
3.1.1 實驗藥品 - 21 -
3.1.2 反應氣體 - 22 -
3.1.3 實驗器材 - 22 -
3.2 金觸媒製備程序 - 23 -
3.2.1 以水熱法製備TS-1擔體 - 23 -
3.2.2 製備較小顆粒TS-1擔體 - 24 -
3.2.3 熱硝酸預處理 - 24 -
3.2.4 加入Tween 80程序 - 25 -
3.2.5 有熱硝酸預處理及加入Tween 80程序 - 26 -
3.2.6 擔載金程序 - 26 -
3.3 觸媒鑑定 - 27 -
3.3.1 原子吸收光譜分析 (Atomic Absorption Spectroscopy, AA) - 27 -
3.3.2 感應耦合電漿質譜分析 (Inductively Coupled Plasma-Mass Spectrometer, ICP) - 28 -
3.3.3 化學分析影像能譜分析 (Electron Spectroscopy for chemical Analysis System, ESCA) - 28 -
3.3.4 X光粉末繞射分析 (X-ray Powder Diffraction, XRD) - 29 -
3.3.5 比表面積與孔隙量測(BET measurement) - 30 -
3.3.6 霍式轉換紅外光譜分析 (Fourier-Transform Infrared Spectrometer, FTIR) - 30 -
3.3.7 紫外光/可見光光譜分析 (UV/VIS Spectrophotometer, UV) - 31 -
3.3.8 動態光散射粒徑分析(Particle Size Analyzer, Nano-ZS) - 31 -
3.3.9 靜態雷射光繞射粒徑分析分析 (Particle Size Analyzer by Static Light Scattering Method) - 31 -
3.3.10 水銀測孔分析 (Mercury porosimeter) - 32 -
3.3.11 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) - 32 -
3.4 觸媒活性測試 - 33 -
第四章 結果與討論 - 35 -
4.1 Au/TS-1觸媒基本活性之探討 - 35 -
4.1.1 不同金擔載量對Au/TS-1活性之影響 - 35 -
4.1.2 不同GHSV對Au/TS-1活性之影響 - 37 -
4.1.3 比較不同金擔載量下的金粒子活性 - 39 -
4.2 小顆粒TS-1 (TS-1-2T)其基本性質鑑定與反應活性測試 - 41 -
4.2.1 SEM和Nano-ZS分析結果 - 41 -
4.2.2 XRD分析結果 - 42 -
4.2.3 BET分析結果 - 43 -
4.2.4 FT-IR分析結果 - 45 -
4.2.5 ICP和XPS分析結果 - 47 -
4.2.6 UV-Vis分析結果 - 47 -
4.2.7 Au/TS-1和Au/TS-1-2T反應活性之比較 - 48 -
4.3 使用硝酸預處理之探討 - 51 -
4.3.1 UV-Vis分析結果 - 51 -
4.3.2 ICP和XPS分析結果 - 52 -
4.3.3 XRD分析結果 - 53 -
4.3.4 FT-IR分析結果 - 54 -
4.3.5 BET分析結果 - 55 -
4.3.6 SEM分析結果 - 56 -
4.3.7 硝酸預處理對觸媒反應活性之影響 - 57 -
4.4 添加Tween80介面活性劑之探討 - 61 -
4.4.1 DTA分析結果 - 62 -
4.4.2 BET分析結果 - 64 -
4.4.3 SEM結果 - 66 -
4.4.4 Mercury porosimeter分析結果 - 67 -
4.4.5 LS230分析結果 - 69 -
4.4.6 添加Tween80對觸媒反應活性之影響 - 72 -
第五章 結論 - 76 -
第六章 參考文獻 - 78 -
dc.language.isozh-TW
dc.subjectTS-1沸石zh_TW
dc.subjectTween 80zh_TW
dc.subjectOctahedral Tizh_TW
dc.subject硝酸預處理zh_TW
dc.subject金擔載量zh_TW
dc.subject丙烯環氧化反應zh_TW
dc.subject環氧丙烷zh_TW
dc.subjectTS-1 zeoliteen
dc.subjectgold loadingen
dc.subjectpropylene oxideen
dc.subjectEpoxidation of propeneen
dc.subjectHNO3 pretreatmenten
dc.subjectOctahedral Ti and Tween 80en
dc.title丙烯在氧氣及氫氣共存下一步合成環氧丙烷zh_TW
dc.titleOne-step synthesis of propylene oxide from propene in the presence of oxygen and hydrogenen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李國禎(Kuo-Tseng Li),鄭淑芬(Soo-Fin Cheng),吳紀聖(Chi-Sheng Wu)
dc.subject.keyword丙烯環氧化反應,環氧丙烷,TS-1沸石,金擔載量,硝酸預處理,Octahedral Ti,Tween 80,zh_TW
dc.subject.keywordEpoxidation of propene,propylene oxide,TS-1 zeolite,gold loading,HNO3 pretreatment,Octahedral Ti and Tween 80,en
dc.relation.page87
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf4.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved