Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61504
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorMeng-Fan Wuen
dc.contributor.author吳孟凡zh_TW
dc.date.accessioned2021-06-16T13:04:28Z-
dc.date.available2013-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-05
dc.identifier.citation1.4 References
1. World Energy Council (2013) World Energy Issues Monitor 2013. London: World Energy Council.
2. E. Becquerel, Compt. Rend., 1839, 9, 561.
3. S. J. Fonash, Solar Cell Device Physics (2nd ed. ), Academic Press, 2009. Print.
4. J. M. Nunzi, Organic Materials and Devices for Photovolataic Application, ERT Cellules Solaires Photovoltaiques Plastiques, Labo POMA, Angers, France, 2002, 210.
5. A. Cheknane, H. S. Hilal, F. Djeffal, B. Benyoucef, and J. P. Charles, Microelectron. J., 2008, 39, 1173.
6. M. Quintana, T. Edvinsson, A. Hagfeld and G. Boschloo, J. Phys. Chem. C, 2007, 111, 1035
7. K. Keis, C. Bauer, G. Boschloo, J. Photochem. Photobiol., A, 2002, 147, 57.
8. X. Wang, J. Song and Z. L. Wang, J. Mater. Chem., 2007, 17, 711.
9. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. B. Li, L. W. Wang and A. P. Alivisatos, Nature, 2004, 430(6996), 190.
10. Z. L. Wang, J. Phys.: Condens. Matter, 2004, 16, R829.
11. 50 Z. L. Wang, Mater. Today, 2004, 26.
12. V. A. Colemen, and C. Jagadish, Basic Properies and Applications of ZnO, ACT, 2006. Print.
13. K. Ellmer and A. Klein, (2008) ZnO and Its Applications, New York: Springer
2.4 References
1. L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, Angew. Chem. Int. Ed., 2011, 50, 9697.
2. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Nati. Acad. Sci, 2008, 105, 2783.
3. D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller,, R. Gaudiana, and C. Brabec, Adv. Mater., 2006, 18, 2884.
4. The ABET manual: SUN 2000U
3.6 References
1. P. F. Carcia, R. S. McLean, M.H.Reilly, and G. Nunes, Appl. Phys. Lett., 2003, 82, 117.
2. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett., 2004, 396, 21.
3. B. S. Li, Y. C. Liu, Z. S. Chu, D. Z. Shen, Y. M. Lu, J. Y. Zhang, and X. W. Fan, J. Appl. Phys., 2002, 91, 501.
4. M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, J. Cryst. Growth, 2004, 268, 149.
5. W. Z. Xu, Z. Z. Ye, D. W. Ma, H. M. Lu, L. P. Zhu, B. H. Zhao, X. D. Yanf, and Z. Y. Xu, Appl. Phys. Lett., 2005, 87, 093110.
6. K. Nakahara, H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger, and S. Niki, J. Cryst. Growth, 2001, 227, 923.
7. M. Schuisky, J. W. Elam, and S. M. George, Appl. Phys. Lett., 2002, 81, 180.
8. J. J. Wu and S. C. Liu, Adv. Mater., 2002, 14, 215.
9. X. L Hu, Y. J. Zhu, and S. W. Wang, Mater. Chem. Phys., 2004, 88, 421.
10. Q. Gan, F. Bartoli, and Z. H. Kafafi, Adv. Mater., 2013, 25, 2385.
11. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, Adv. Mater., 2008, 20, 3516.
4.4 References
1. C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett., 2005, 87, 193508.
2. H. Y. Lee, H. L. Huang, and C. T. Lee, Appl. Phys. Express, 2012, 5, 122302.
3. C. S. Chen, P. C. Yang, Y. M. Shen, S. Y. Ma, S. C. Shiu, S. C. Hung, S. H. Lin, and C. F. Lin, Sol. Energy Mater. Sol. Cells, 2012, 101, 180.
4. N. Sekine, C. H. Chou, W. L. Kwan, and Y. Yang, Org. Electron., 2009, 10, 1473.
5. L. Baeten, B. Conings, H. G. Boyen J. D’Haen, A. Hardy, M. D’Olieslaeger, J. V. Manca, and M. K. V. Bael, Adv. Mater., 2011, 23, 2802.
5.5 References
1. X. Fan, G. Fang, F. Cheng, P. Qin, H. Huang, and Y. Li, J. Phys. D: Appl. Phys., 2013, 46, 305106.
2. X. Li, C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, Adv. Mater., 2012, 24, 3046.
3. W. Y. Hong, T. W. Yang, C. M. Wang, J. H. Syu, Y. C. Lin, H. F. Meng, M. J. Tsai, H. Cheng, H. W. Zan, and S. F. Horng, Org. Electron., 2013, 14, 1136.
4. L. Hao, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, Angew. Chem. Int. Ed., 2011, 50, 9697.
5. Z. G. Zhang, H. Li, Z. Qi, Z. Jin, G. Liu, j. Hou, Y. Li, and J.Wand, Appl. Phys. Lett., 2013, 102, 143902.
6. Y. J in, J. Wnag, B. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett., 2008, 8, 1649.
7. K. H. Tam, C. K. Cheung, T. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Ding, and W. K. Ge, J. Phys. Chem, B, 2006, 110, 20865.
8. G. A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, J. Weber, Phys. Rev. B: Solid State, 2005, 72, 195211.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61504-
dc.description.abstract氧化鋅奈米柱為本篇論文主要應用之材料,配合聚三己烷塞吩(P3HT)及D-A 共聚物和带噻吩共軛支鏈的苯並二噻吩與並二噻吩的共聚物(PBDTTT-C-T)為施體,苯基碳61丁酸甲酯(PC61BM)及苯基碳71丁酸甲酯(PC71BM)為受體,製作高轉換效率倒置結構太陽能電池。
首先,先探討如何有效控制氧化鋅奈主柱之成長,包括奈米柱之直徑及整體佔空比,接著優化奈米柱表面形貌至理想狀態,並以掃描式電子顯微鏡作為測量工具,透過水熱預熱法,穩定水熱法製成,成功成長所需的氧化鋅奈米柱基板。
論文的第二部分是把氧化鋅奈米柱應用至聚三己烷塞吩系統之太陽能電池,隨著氧化鋅奈米柱長度的增加,漏電流也增加,電池效率先增後減,最後在成長150分鐘之奈米柱找到最佳條件,相較於沒有奈米柱的元件,電池效率效率從3.55提升至4.42%。
論文的第三部分為把氧化鋅奈米柱應用至PBDTTT-C-T之系統,透過將氧化鋅奈米柱180oC 退火一小時,改善氧化鋅表面化學性質,使電池效率再次提升,從原先的5.20%上升至7.04%。
zh_TW
dc.description.abstractZinc oxide (ZnO) nanorods are the main material studied in this thesis. The materials for active layers are poly (3-hexylthiophene) (P3HT) and poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl]- alt -[2-(2’-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl]} (PBDTTT-C-T) as donors, and phenyl-C61-butyric acid methypl ester (PC61BM) and phenyl-C71-butyric acid methyl ester (PC71BM) as acceptors. By applying ZnO nanorods to these two systems, we successfully fabricate inverted solar cells with high power conversion efficiency.
In the first part of this dissertation, the ZnO nanorods grown by hydrothermal method is discussed. By pre-heating the solution, the ZnO nanorods are well controlled to reach an appropriate configuration.
Secondly, the ZnO nanorods are applied to P3HT-based solar cells. In comparison with the device without nanorods, the PCE is raised from 3.55 to 4.42 %. With prolonging the growth duration, the PCE increases. The optimized duration is 150 minutes.
Thirdly, the ZnO nanorods are applied to PBDTTT-C-T-based solar cells. The surface of ZnO is modified by annealing at 180oC for 1 hour, and the PCE is raised from 5.20 to 7.04 %.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:04:28Z (GMT). No. of bitstreams: 1
ntu-102-R99941076-1.pdf: 3994913 bytes, checksum: a83b60f9f213d78a5d0dd55f30aeb7bb (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsChapter 1 Introduce………………………………………………………1
1.1 Background and Motivation…………………………………………………………….1
1.2 Mechanisms and Basic Principle of Solar Cells……………………………………..2
1.2.1 Photovoltaic Effect…………………………………………………………..2
1.2.2 Basic Parameters…………………………………………………………….2
1.3 Zinc Oxide and Its Nanostructure………………………………………………………5
1.4 References………………………………………………………………………………….8
Chapter 2 Experimental Setup…………………………………………...9
2.1 Flow Chart…………………………………………………………………………………9
2.2 Device Fabrication……………………………………………………………………...10
2.2.1 Substrate Preparing………………………………………………………...10
2.2.2 ZnO Deposition…………………………………………………………….12
2.2.3 Growth of ZnO Nanorods by Hydrothermal Method………………………13
2.2.4 Active Layer Deposition……………………………………………………14
2.2.5 Thermal Evaporation……………………………………………………….16
2.3 Equipment………………………………………………………………………………...17
2.3.1 Glove Box………………………………………………………………….17
2.3.2 Solar Simulator System…………………………………………………….17
2.3.3 Scanning Electron Microscope……………………………………………..18
2.4 References………………………………………………………………………………..20
Chapter 3 Zinc Oxide Growth Control………………………………...21
3.1 Mechanisms of ZnO Nanorod Growth ……………………………………………….21
3.2 Effect of Pre-heating…………………………………………………………………….22
3.3 Growth at Different Concentrations…………………………………………………..27
3.4 Growth at Different Durations………….……………………………………………..29
3.5 Conclusion………………………………………………………………………………..33
3.6 References………………………………………………………………………………..34
Chapter 4 Enhancing Efficiency of P3HT-Based Solar Cell…………..35
4.1 Band structure of P3HT-Based Devices………………………………………………35
4.2 Applying ZnO Nanorods to P3HT-Based Solar Cells………………………………36
4.3 Conclusion………………………………………………………………………………..44
4.4 References………………………………………………………………………………..45
Chapter 5 Enhancing Efficiency of PBDTTT-C-T-Devices…………...46
5.1 Band Structure of PBDTTT-C-T-Based Devices………………………………….46
5.2 Applying ZnO Nanorods to PBDTTT-C-- Based Solar Cells……………………47
5.3 Optimizing Efficiency of the ZnO Nanorods by Annealing………………………49
5.4 Conclusion……………………………………………………………………………..51
5.5 References……………………………………………………………………………...52
Chapter 6 Conclusion and Future Work……………………………….53
6.1 Conclusion……………………………………………………………………………..53
6.2 Future Work……………………………………………………………………………54
dc.language.isoen
dc.subject聚三己烷塞吩zh_TW
dc.subject倒置結構zh_TW
dc.subject水熱法zh_TW
dc.subject氧化鋅奈米柱zh_TW
dc.subjectZnO nanoroden
dc.subjectP3HTen
dc.subjectPBDTTT-C-Ten
dc.subjecthydrothermal methoden
dc.title利用氧化鋅奈米柱製備倒置結構太陽能電池zh_TW
dc.titleFabrication of Inverted Solar Cells with Zinc Oxide Nanorodsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君(I-Chun Cheng),吳育任(Yuh-Renn Wu)
dc.subject.keyword氧化鋅奈米柱,水熱法,聚三己烷塞吩,倒置結構,zh_TW
dc.subject.keywordZnO nanorod,P3HT,PBDTTT-C-T,hydrothermal method,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2013-08-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved